MULTIBUMP SOLUTIONS AND
ASYMPTOTIC EXPANSIONS FOR
MESOSCOPIC ALLEN-CAHN TYPE EQUATIONS

MATTEO NOVAGA AND ENRICO VALDINOCI

ABSTRACT. We consider a mesoscopic model for phase transitions in a periodic medium and
we construct multibump solutions.
The rational perturbative case is dealt with by explicit asymptotics.

INTRODUCTION

We are concerned with the equation
(1) —Au+ F'(u) + H(z) =0, z € R,

where the smooth function F' is a double-well potential.
More precisely, we assume that
e F(t) >0 for any t € R,
e F(t) =0 if and only if ¢ = 1, and F"(1) = F"(-1) > 0,
e there exist positive constants dg, ¢ such that F/(—1 — s) < —c and F'(1+ s) > ¢ for
any s = o,
o F(—1+4s) = F(1+s) for any s € [—d, do].
The function H € L*°(R™) in (1) will be a small periodic perturbation of the operator. To
this extent, we suppose that
o ||H| poo(rn) is suitably small,
e H is Z"-periodic, with zero average on [0, 1]", that is

H(z+k) = H(z) Vr € R* and k € Z"

2) and H(z)dx = 0.
[0,1]

Equation (1) is the Euler-Lagrange equation of the (formal) functional

2
(3) / @ + F(u) + H(z)u dx.
The functional in (3) has been considered in [DLN06, NV07] as a mesoscopic model for phase
transitions (see also [DY06] for the analysis of the gradient flow of (3), and [DOO07] for a
related problem in the random setting).
When H = 0, (1) is called the Ginzburg-Landau or Allen-Cahn equation, which is a pop-
ular model for superconductors and superfluids [GP58, Lan67] and for gas and solid inter-
faces [Row79, ACT79]. Similar equations also arise in cosmology [Car95].
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The term H may be seen as a small defect which favors locally one of the phases: condition (2)
then says that such defect is “neutral” on large scales, in the sense that both the phases are
equally treated.
We refer to [DLN06, DY06, NV07, DO07] for further physical motivations and geometric
interpretations.
Tn [NV07], minimizers of (3) have been dealt with. We say that u € W,.”(R") is a minimizer
if
\V4 2
/ [Vul® + F(u) + H(z)u dz
(@ v
V(u+ )
</ Viu+9)F 5 ¥ + F(u+) + H(z)(u+v¢) do
U

for any ¢ € C§°(U) and any bounded domain U (minimizers of this type are often called
“local”, or “class A”, minimizers). As usual in the calculus of variation framework, the word
minimizer for (4) refers to the fact that the energy is increased by compact perturbations,
even if the energy (3) in the whole of R” may well be infinite.
In particular, the following result has been proved in [NVOT7].

Theorem 1. There exist two Z"-periodic minimizers UL of (3), with Ut =U~ + 2.

For small || H|| o (rny, Ut and U~ are uniformly close to +1 and —1, respectively.
Moreover, given w € S™ 1, there exist minimizers uf of (3), which connects UT and U~ far
from wt.

More explicitly, there are constants Cq, Co > 0 such that

(5) luf (z) — U (z)| + |ug, (z) — U~ (z)| < Cre @2
and
(6) () — U ()] + u5 (2) — U* ()] < Cre®2®)

for any r € R™.

Remark 2. From the proof of [NV07, Lemma 5.1] it follows that there exists a constant
C > 0, depending only on the potential F' and the dimension 7, such that

(7) [UF =1l poon) < C | H||poo (mm), U™ + 1 pee gr) < C||H|| oo n)-

The gist of this paper is to detect multibump solutions of the mesoscopic model by gluing
together pieces of uf’s, according to the following result:

Theorem 3. Under a suitable non-degeneracy assumption on H and w € S*~!, there exist
solutions of (1) which connects UT and U~ in the direction given by w, as many times as
we want.

Analogous layered and multibump solutions have been studied in [AJM02, RS03, RS04] and
multiplicity results are also in [dILV07]: differently from those results, the multibumps are
here obtained not by perturbing the potential F'(¢) into Q(z)F(t), but by using the mesoscopic
term H(x).
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A more formal description of Theorem 3 will be given in the subsequent Section 1.

In Section 2, we prove Theorem 3 (and, in fact, the more explicit version of it given in
Theorem 6 below), while Section 3 contains comments and examples about the nondegeneracy
assumption needed in Theorem 3 and an asymptotic expansion for the rational perturbative
case, which we think is interesting in itself (see, in particular Theorems 13, 17 and 19 in
there).

1. FORMAL SETUP AND EIGENVALUES
First we recall an elementary property of the minimal eigenvalue:

Lemma 4. Let f : R* — R" be a smooth and Z"-periodic function. Then,

() inf /R e [T+ ) e

u€W1’2(]R"/Zn)
||uHL2(]R"/Z”)=1

is finite and attained at some function v € WH2(R" /7).

Also, {v =0} =0 and, if A € R is the quantity in (8), we have that

(9) —Av + fv = Av.

Proof. The fact that the infimum in (8) is finite and attained follows from the standard

direct method in the calculus of variations. Indeed, one takes a minimizing sequence v, €
WL2(R* /Z™) of

B(u) = / Vu(@)? + f(2)ud(z) de
R"/Z7
constrained to ||vp|| 2z = 1.
By comparing with a smooth compactly supported function, we may suppose that E(v,) is
uniformly bounded. What is more,

/ f(@)l(z) do
Rn /Zm

< [ fllpee /27

and so ||[Voy||g2(gn/z») is also uniformly bounded. This gives the compactness necessary to
show that the infimum in (8) is attained, and thence finite.

Any function v attaining the minimum in (8) satisfies (9) for a Lagrange multiplier A. By
integrating (9) against v, it follows that A agrees with the quantity in (8).

Moreover, the function |v| also attains the minimum in (8) and so it satisfies (9) in the weak
distributional sense. Thus, by the strong maximum principle, |v| > 0. O
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We now consider the linearization of (1) around a function u € L*(R"):
(10) —Av + F"(u)v = A, AeR

and we investigate the properties of its eigenvalues.
Notice that, by Theorem 1 and Remark 2, we have

(11) F'"(UN=F"(U7).
Then, the following is a plain consequence of Lemma 4 and (11):

Proposition 5. Let \; be the minimal eigenvalue of the operator —A+F"(U%) in L>(R™ /Z™).
Then A1 > 0 and there exists a Z"™-periodic function w > 0 satisfying

—Aw + F"(U*)w = 0.

We now state the non-degeneracy condition needed in our paper.

For this, we introduce the following equivalence relation on R”. Given w € SN~! and =z,
y € R™, we say that © ~, y if and only if (w,x —y) =0 and z —y € Z™

The quotient space R"/ ~,, will be denoted by R”.

Let w € S™ ! be such that

(A)  the minimal eigenvalues A} and A\, of — A + F”(uE) in L2(R")
are strictly positive and belong to the discrete spectrum of the operator.

Note that condition (A) is an assumption on both w and H, since v}, and u, depend on H
(recall Theorem 1).
An equivalent formulation of condition (A) is that

A= inf / |Vul|? + F" (uX)u? dx
(12) ||u||L2(Rg):1 R

are strictly positive and attained at some eigenfunction v}

.
Note that, even when (A) fails, the quantity in (12) is non-negative, due to the minimizing
properties of uX (recall (4) and Theorem 1).

We reckon that assumption (A) is satisfied for a generic function H. Such condition is analo-
gous to the stability condition assumed in [DY06], and a formal computation is performed in
Section 4.2 of [DY06] to justify such assumption. Related asymptotic expansion of eigenvalues
are also in [Mar06, Bor05].

Here, in Section 3, we will make rigorous expansions, interesting in themselves, to make
condition (A) more explicit in the rational perturbative case.

We are now in the position of giving a formal statement of Theorem 3, which is the main
result of the paper.

Theorem 6. Let H and w € R" be such that assumption (A) holds. Then, there exist
solutions of (1) which connects Ut and U~ in the direction given by w, as many times as
we want. More precisely, there exists a constant C > 0 such that for any € > 0 there exists
K > 0 with the following property.

Let N € ZU{—oc} and M € ZU {400} with N < M.

Let {; € R, with i € ZN [N, M], with {j11 —£4; > K for any j € ZN[N,M —1].

Let bn_1 := —00 if N > —o0 and lpr41 := 400 if M < 400 and set ZZ = (b + 4iy1)/2.
Then, there exists a solution u of (1) such that u(z) has distance less than Ce from, alter-
nately, ut (z — iw) and u_, (x — lw), for any = € R* such that (w,z) € ({; 1+ 1,0; — 1).



MULTIBUMP SOLUTIONS FOR MESOSCOPIC ALLEN-CAHN TYPE EQUATIONS 5

Moreover, u(a:) has distance less than Ce from, alternately, Ut and U™ for any x € R™ such
that (w,z) € (0; —2,0; + 2).

In Theorem 6 above, we made use of the obvious notation

[—00,a] := (—o00,a] U {—o0}, [a,+00] := [a, +00) U{+o0}
and [—00,4+00] := RU{—00} U {+00}.

The content of Theorem 6 is visualized in the figure on page 3. Namely, the multibump
solution we construct has one and only one excursion from (the vicinity of) one phase to
(the vicinity of) the other one in a large interval around ¢;, while each of these transitions is
suitable glued with the opposite one near ’;.

2. PROOF OF THEOREM 6

First, let us suppose that N # —oo and M # 4o00. Up to relabelling £;, we may suppose that
N =0, so the points ¢; are just

o, 01y b

For any ¢ € ZN [0, M — 1], let ¢;(x) := ¢p({w,x) — ¢;

For any i € Z N [0, M] let also u; be alternately u} (z — f;w) and uj (x — f;w), as prescribed
by Theorem 6.

We also set v; to be either v}, if u; = u}, or vy, if u; = u, where v is given by condition
(A), according to (12). The eigenvalue A\Z corresponding to v; will be denoted by ;.
Analogously, we set z; (resp., %) to be either U™ (resp., U™), if u; = u};, or U™ (resp., UT),
if u; = u,,, where U™ is given in Theorem 1.

Note that, by Theorem 1, there exists a suitable L > 0 in such a way that

Let ¢ € C*(R,[0,1]) be such that ¢(t) =1 for any ¢t > 1 and ¢(t) =0 for any ¢t < —1.
).

| < " Al

2([F" | oo (—2,21)
| < " >\1

2([F" || zoo (1—2,21)

lui(z) — zi(z) as long as (w,z) > L, and

(13)

lui(z) — 2i(z) as long as (w,z) < —L.

Recalling (11), we also define
(14) O(z) = F"(2i(z)) = F"(2(2)) -
Note that

|®(z) = F"(ui(z))|

15
(15) < ||F'"||Loo([,2’2]) min{|u;(z) — z;(z)|, |ui(z) — 2;(z)|} for any z € R".

Given C > 0, to take suitably large in the sequel, we define

U = u; £ e(w + Cvy),
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where w is the one given by Proposition 5, and

M-1
pH(x) = (H(lqﬁj(w)) g (2)

+ ¢M_1(:c)ﬂ$[(x).

Note that, if k € ZN[1, M —1] and (w,z) € [fg_1 + 1, £}, — 1], we have that ¢;(z) = 0 for any
j 2k and ¢;(z) =1 for any j < k — 1, thence

(16) B = af if (w,x) € [fy—1 + 1,0, — 1].
Also,

(17) B () = iy ()

if (w,z) < o — 1 and

(18) B (z) = ay(x)

if (w,z) > Oy + 1.
Also, if k € Z N [0,M — 1], we have that ¢;(z) = 0if £ < j < M —1 and ¢;(z) = 1 if
0<j <k, when (w,z) € (¢ — 2,4 + 2). Accordingly,

(19) BE = (1 — dr)ui + druj,, if (w,z) € (b — 2,01 +2).

Recalling Theorem 1, we have that both u,'c" and u;c"ﬂ (resp., u; and w,_ ;) are uniformly
close (hence C?-close, by elliptic estimates) to z (resp., 2;) in {(w,z) € (£ — 2,0 + 2)}, as
long as £ — ¢ is large enough.

Therefore, by (19),

(20) |8t — uf||C’2({(w,z)€(l7k72,l7k—|—2)}) is as small as we like,

as long as fi 1 — ¢y is large enough.
As a consequence of (16), (17), (18) and (20), we have that for any z € R™ there exists 4 in
such a way that

2
(21) Z |D? (8% — uiF)(z)] is as small as we like,
|51=0

provided that the ¢;’s are conveniently far apart.
We now claim that there exists ¢ > 0 such that

(22) =[F" |0 (2,21 min{Jus — 2, Jui — Zil}w + Mw + Chiv; > ¢,

as long as C' is chosen suitably large (recall that w and A; are the ones given by Proposition 5).
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To prove (22), we distinguish two cases. If [(w,z)| > L, we use (13) to get
_ ||F”I||Loo([_2,2]) min{|ui — Zz'|, |uz — 2’1‘}11) + Mw + C A\,

(23) 2 i

> — inf w.
~ 2 Rjojzn

If, on the other hand, |(w,z)| < L, we have
_ ||F”,||Loo([_2,2]) min{|ui — Zz'|, |uz — 2’1‘}11) + Mw + C )\,

> 5| F"|[ 01 C); inf ;-
SIE™ | poo ((-2,27) + Hom<r

Then, (22) follows from (23) and (24) if C is conveniently large.
Furthermore, recalling the setting of (14), we see that

~AGE + F'(@) + H(z)
= —Au; + F'(u; £ e(w + Cv;)) + H(z) + e(—Aw — CAw;)
= F'(u; + e(w + Cv;)) — F'(u;) £ e(w + Chiv; — Dw — CF" (u;)v;)
= ie((F"(ui) - ‘1))11] + Mw + C'Aw,) + 0(62).

(24)

As a consequence of the latter estimate, (15) and (22), we deduce that
— Auf +F'(@f)+ H(z) > ce/2  and

— AG; + F'(a;) + H(z) < —ce/2.

By (21) and (25), we gather that

— AT+ F'(BT) + H(z) >
—ABT+F'(B7) + H(x) < —ce/4,

as long as ¢; ;1 and ¢; are all distanced enough (possibly in dependence of €).
Let n:= (87 4+ 87)/2. Then, n is smooth and 8~ < n < 8*. Thus, for any R > 0, we let ug
be a solution of

>
25
(25) <

(26)

—Aug + F’(uR) + H(a:) =0
in the open ball Bg, with u = 7 on 0Bg.
Note that the existence of such up is warranted, for instance, by direct minimization and
that 3~ < ugr < 87 by Comparison Principle and (26).
Also, by elliptic regularity theory, ur converges, up to subsequences, to some u, which is a
solution of (1) and which is trapped between 3~ and 7.
Such u is the desired multibump solution, thanks to (16), (17) (18), (20) and Remark 2, thus
proving Theorem 6 when both N and M are finite.
The case in which N or/and M become infinite is then obtained by taking limits, due to
elliptic estimates. This ends the proof of Theorem 6.

Remark 7. From the above proof it also follows that when A} > 0 (but possibly A\, = 0),
then there are homoclinic type connections between u} (z — £y) and uy, (z — £1), for £ — £y
suitably large.

Analogously, when A, > 0 (but possibly A, = 0), then there are homoclinic type connections
between u, (z — £y) and u} (z — £1).
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That is, if we control only one eigenvalue in (A), we are still able to construct onebump
solutions.

3. ON THE VALIDITY OF THE NON-DEGENERACY ASSUMPTION

We consider now the case in which w is rational, i.e., w € Q". Notice that in this case R, is
the topological product of R and a (n — 1)-dimensional torus.
We also suppose that

(27) H, =eh,
and we show that, even if assumption (A) is violated for € = 0, it does hold, for somewhat

generic h’s, if € # 0 (see for instance Theorem 19 below).

Lemma 8. Let uf = ul be the function given by Theorem 1 when H = €h is as in (27).
Then, there exists a sequence €, — 0 and a smooth function Y= which is a minimal solution

of

(28) ~AyEFF' () =0, for any x € R"
satisfying

(29) v (@) =7 (W) forany z € R

for suitable vF : R — R, with

(30) Jdm () =£1,  end  lim yf(5) = FL,
for which

(31) lim o = %,

uniformly on R .

Proof. By elliptic regularity estimates and the Ascoli-Arzela Theorem, uF converges locally

uniformly, up to subsequence, to some y*. Since uF is a solution of (1) with H as in (27),
passing to the limit we get (28). More precisely, since uX minimizes the energy (4) under
compact perturbations with H as in (27), passing to the limit we conclude that 4* minimizes
the energy under compact perturbations with H = 0.

In fact, the limit in (31) is uniform, not only locally uniform, in R”. Indeed, suppose, by

contradiction, that there exists an infinitesimal sequence €, and z,, € R’ such that
(32) ul, (@m) — 7" (zm)] > a,
for some a > 0. From (5), (6) and (7),

[uf,, () =7+ (@) < O (7@ + )

and so |{w,Tnm)| < C, for a suitable C > 0, due to (32). Then, by the locally uniform
convergence,

g (@m) =7 (@m)] < lud, =77 | oo (o, <y < @/2

for large m, in contradiction with (32)

This proves the limit in (31) to be uniform in R7,.

Accordingly, the limits of 4= for {w,z) — Zoo are uniformly attained, because so are the
ones of uX, in the light of (5), (6) and (7).

Then, the results in the literature on the De Giorgi-Gibbons conjecture (see, e.g., [Far03])
imply the one-dimensional symmetry claimed in (29). O
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From now on, we will fix the sequence ¢,, which for simplicity we will still call €, and the
limit functions 4* given by Lemma 8.

Lemma 9. The functions (YI)' are strictly positive on the whole of R.
Proof. First of all

(33) solutions of #(t) + F'(x(t)) = 0 are even with respect to critical points.

Indeed, if #(7) = 0 for some 7 € R, we set X (t) := z(*t+7), so that X, (0) = X_(0) = z(7)
and X, (0) = X_(0) = 0. The uniqueness of ODE solutions then implies that X, (t) = X _(¢),
that is z(t + 7) = (—t + 7), proving (33).

Note that yF cannot have one and only one critical point, because of (30) and (33). Conse-
quently, if the claim of Lemma 9 were false, v would have at least two critical points, and
so, by (33), they would be periodic. This is in contradiction with (30) and proves the desired
result. O

In what follows, when no confusion is possible, the subindex of ygc will be dropped and 7+
will be identified with 4 without further comments. In particular, we will denote by (y*)’
the derivative of v* in the direction given by w, i.e. (y5) = (VyE,w) = (vI) ((w, z)).

We now introduce the Schrodinger operator

= A+ F"(v*(2)).

We observe that, as a consequence of (28),
TH((75)") = T5(F'(+)) = A(F' (7)) + F'(7)F'(v%)
(34) = =F"(7%) (%))’ - F"( 50+ P F ()
—F" () (7))

Lemma 10. The spectrum of TT is composed of an essential spectrum, corresponding to
the unbounded interval [F"(1),+00), and of a discrete spectrum, given by a finite number of
eigenvalues 0 = \F < -+- < X%, < F"'(1), with finite multiplicities.

Moreover, the eigenspace corresponding to )\(df = 0 is spanned by the eigenfunction (y*)' €
L*(RY).

Proof. The first assertion follows from [Kat95, Theorem 5.7 in Chapter V.5.3].

The fact that )\Oi has multiplicity one follows from the minimality property of (y*)’ and the
strong maximum principle, applied to the equation 7Fv = 0 (indeed, the argument in [Eva98,
page 340] may be repeated verbatim here). O

We now define

R

$:= ((vH)) = {¢€L2(RZ) 5.t ¢(7i)'dw=0}-

Lemma 11. For any gy € S there exists a unique g1 € S such that T*g; = go.

Proof. Notice that T¥ is self-adjoint and its domain is dense in L?(R"), thence it is a closed
operator, and its image is the orthogonal to the kernel (see, e.g., Section II.6 in [Bre83]).
Since the kernel of T% is spanned by (7%)’, due to Lemma 10, we get that given any gy €
there exists §; € L2(R") such that 7§ = go.
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We now set

e gy dz
T o gy

Such g; lies in § and T*g; = T*§; = go.

Moreover, if T*g, = go, with g2 € S, we have that T%(g; — go) = 0 and so, by Lemma 10,
g1 — go = O(y*F)', for some C € R. Therefore,

CN*Y Iagay = [ (= ) (Y do =0,

w

so C =0 and g1 = go. O

In the light of Lemma 11, given gy € 3, we define (T%) gy to be the unique element g; in
S for which THg; = go.
Since T is self-adjoint, we have that

(35) | (@ s)gae= [

for any f, g € S
Given z € R?, we let

(@) de,

L n
w w

Q:={yeR}: (w,z—y) =0}
Note that Q; is an (n — 1)-dimensional torus.

Lemma 12. Let a:(:)'E € R be such that ’yi(:vat) = 0. Then, there exists an infinitesimal

sequence ME for which

/Q uZ(z) dr = v (= + Mfw)|Q$g|
+
70

Proof. Let

1

mE = _—— ut(z) d.

‘Qz(:H Q 4

®0

Thanks to (31) we get mZ — 0, as e — 0. By Lemma 9, we know that +, is invertible. Thus,

the thesis follows by letting MF := (vF)~'(m¥) — (w, z3). O
We will now consider the translated etheroclinic

e () =y (@ + M w),

for which there holds
(36) / vE de = / u de.
Q 4+ Q 4
Z0 “0

We are in the position of improving the asymptotics of Lemma 8:

Theorem 13. For all € > 0, there exist smooth functions ¢* € L®(R?) such that
(37) uE () = 7E (@) + ep™(2) + ofe).

Moreover, ¢+ are solutions of

(38) —A¢E + F'(vH)pT +h=0.
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Proof. We introduce the cylindrical slab
Bg := {z € R such that |(w,z)| < R}.

Let
+ +
+ . Ue — Ve
(39) 9F = 2
and

1
ctim [ PU0E 4 ruE - o) ar.
0

Note that ¢ is a smooth function, which is uniformly bounded in € and close to F"(y*) for
small €, by (31), and that
(40) LEgE+h =0,

where we defined the operator

LE:=-A+cE
We claim that, for any R > 1 there exists Cr > 0, independent of ¢, such that
(41) 1621 22(8) < Cr-

For this, we denote by UX = U* the Z"-periodic minimizers of Theorem 1 and we consider

the functions N
’lﬁi — Ue + 1
€ ° € )

which solve the equation
~AYE+dEYE+h =0,

where )
d= = / F'"(£147(UX F1))dr.
0
Recall that, from Remark 2,

(42) [9E] oo () < CllAl| poe (R
where the constant C' does not depend on e.
We now let
=g — e
From Theorem 1, we have that the functions n lie in W22(R"), and solve

(43) Lint = (dFf —cF)v7.

+
€

(44) Il = ¢ ll2 @) < C,

for some constant C' > 0 independent of e.

Let now puX be the minimal eigenvalue of the operator L¥ on L%(R"), and w¥ > 0 the
corresponding eigenvector, which we may take with L?(R")-norm equal to 1. Notice that,
as € — 0, we have that uF is simple, u* — 0 and wF — :I:(’yi)'/||(fyi)'||L2(RE), uniformly
on compact subsets of R, due to Lemma 10, the continuity properties of the eigenvalues
[Kat95, Chapter IV.3.5], and the regularity estimates for w¥ [GT83, Theorem 8.13].

In particular, by Lemma 9 there exists ¢ > 0 such that

(45) wi(y) >c¢ forallyec ng:

Notice that, since u= converge exponentially to U:E independently of e, we have

€
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Let us now split n¥ = 7 + aFwE, where of = (nF, wk) r2(rr)- Recalling (31), we see that
L¥ is a perturbation of T+ and so, by Lemma 10 and [Kat95 page 208, Theorem 3.1], we see
that [—0,,0,] does not meet the spectrum of LY except that in pr, for some suitably small
o, > 0, independent of e.
As a consequence, we get

[ e = [ (@R > ol e

and so, recalling (43), (44) and (42), we get

N C N
Il eme) € / (LEE)iE do
17 ||L2(R3) n
(46) < ClldE — ¢l ey 19 | o rey
< O]l peowrn)-

Since, by (43),

a:l:L:I:w:E _

we see that 7= solves the equation
L = (48 = ) v — (4 — &) v, wd) o) w
Therefore, recalling (42), (44) and (46), elliptic regularity [GT83, Theorem 8.12] yields

C (17 2 @ey + 1 (d2 = ¢&) ¥Ell2rs))
Cl|h| Loo (rr)-

17 Iw22gay <
(47) <

We let 7 : R — R be the average of 7= on sections of R” orthogonal to w, i.e.

1 +
: - dx.
e (t) == @l Jo e

From (47) and the one-dimensional Sobolev Embedding Theorem [Bre83, Theorem IX.12],
we get

(48) 1 | ey < ClTE Iw2em) < ClAE w22y < ClIbl| oo ®e)-

In order to obtain (41), it remains to bound the coefficient a*. Recalling (36) and (42), we
have

1

il 7 de] < Cllllm
Zo P
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Therefore, by (45) and (48),

claf| < |Q€i\/n wE dx
+

Z0

+ ~+
= = Ne — e ) dz| < C|lhl|pe ®n).-
|Qm0i‘ /Q%i ( ) R2)

This estimate, together with (42) and (46), gives (41).

It follows from (40), (41) and standard elliptic estimates (see, e.g., [Eva98, Section 6.3.1])
that ¢§E converges, up to subsequence, to some ¢+ € L>® (R™), uniformly on compact subsets
of R". Hence, (37) is a consequence of (39).

Passing to the limit in (40) and recalling Lemma 8, we finally obtain (38). O

Proposition 14. Let
M= inf / \Vaul? + F" (uF)u? dz.
llullL2@ny=1 /R
Then, A\ belongs to the discrete spectrum of the operator and

€ F///(,Yj:)((,yi)’)Q(pi dx +0(6)'

49 MN=—
) [ rgaa Joc

€

Proof. Since, by (37),

/ \Vau|? + F" (uF)u?dx
R

</
R

(50) M < Ce

Since A\F is small, according to Lemma 10 and the continuity properties of the spectrum (see
[Kat95, Chapter IV]), it does not lie in the essential spectrum of —A + F”(u}), hence it
belongs to the discrete spectrum.

Let now wZ be the eigenvector corresponding to AZ such that

n n
w w

\Vul? + F"(vE)udz + €| F" || oo 2,20 |65 | Lo (n) / u?dz,

(51) JwE | 2n) = 1,
i.e. there holds
(52) AE = /R Vw2 + P (ud) (w)? da.

Then, by (37),

(53) \e = / Vwg [P + F" (7)) (wg)? + eF" (75) (wg)?¢* dz + o).
RE

In particular, || Vw|| £2(rr) is uniformly bounded, thence we may suppose that

54 wZ converges to some wT weakly in W12(R") and strongly in L2 (R").
€ loc
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Recall that from Lemma 10 and the spectral theorem we have

(55) /R

where A > 0 (here we set AT = F”(1) if 0 is the only discrete eigenvalue),

\Vau|? + F"(yF)u? dz > )\f/ o dz,
R

n n
W W

k= 1/1[(v5) I r2mny and @ :=u — &2 (u, (vE)") r2mn) (VE)"-

Since
tim [ (Vw2 + (o) () di = 0,
e—0 RB

due to (50) and (53), it follows from (55) that

(56) 1T (|72 ) < Ce.

As a consequence, recalling also (51) and (54), we conclude that
(57) wE converges to w® := k(y*)" in L?(R?), as € — 0.
Moreover, since @2 solves the equation

TEGE = —ATg + F'(7 )0 = A\Fw; + (F"(vF) — F"(uf)) w,

by elliptic regularity [GT83, Corollary 8.7] and recalling Theorem 13, (50) and (56) we get
18 ey < C (INEBEagugy + 1 (") — B i) wi ey )
< Ollug =7 1 Teqwn) + ole) = o(e).

In particular, it follows that

(58) / TrwE wtde = /
R

n R
Accordingly, exploiting (53), (57) and (58), we get

M tole) = / Vi + F(F ) (w)? + " (02 (wi)?6* da
R

n
w
L.

— e,«a?/ F"(v5) (7)) 6F da + ofe).
Ry

€

TEGE G dy = /R Vw2 + P (vE) (wt)? dz = ofe).

n
w

waét wf dr + E/R F’”(yf)(wf)%i dx

n
w

This proves (49). O
Lemma 15. We have that
(59) / h(vEY dz = 0.
Proof. From Theorem 13,
[ heErae = [ -ty + Pt da
& RE

— /n (_(,Y:I:)m +F//(,Y:I:)(,)/:I:)/) ¢:|: dr = O,

w

as desired. O



MULTIBUMP SOLUTIONS FOR MESOSCOPIC ALLEN-CAHN TYPE EQUATIONS 15

Notice that condition (59) identifies ¥, which is determined up to a translation along w, in
dependence of the function h.

Lemma 16. Let f € &, and assume that f decays exponentially, possibly with its derivatives,
in the directions given by +w. Then, v* := (TF)"'f € I enjoys the same decay properties
of f, and

(60) fot de = — / vEh de.
RE R%

Proof. We first observe that, thanks to Lemma 11, there exists a unique v* € ¥ such that
T*v* = f. The decay properties of v* then follow from the decay properties of f by elliptic
regularity [GT83, Theorem 8.13]. In particular, v* € L*(R?) so that the right-hand side of
(60) makes sense.

Since, by (38), T*¢* = —h and T+ is self-adjoint on L2(R"), (60) can now be easily obtained
by approximating ¢* with functions q% := ¢t pR, where pg are suitable cut-off functions with
support in Bg. O

Theorem 17. Suppose that F is even. Then,

/ h(z) (v5)" (z) dz + o(e).
R?

€

61 AE=— -
(®!) [0 e,

€

Proof. Since F is even, we have that v (- + (w, a:(jf)) is odd, and so

(62) L P (0% 65 da =0,

so that we can apply Lemma 16 with f = F"'(y%) ((7i)')2.

Then, from (60) we get
[oFme () et an = -
R

(@)~ (F" (%) (%)) hda.
Rz
Hence, by (49) we have

n
w

N = e [ PO (0%)) 6% do o+ ol
T ey Ja
_ _i+/ (@)~ (F"(%) ((*))?) b+ ofe).
1(v*) ||L2(R3) R~

The desired claim then follows from (34). O
We are now in the position to give explicit conditions that imply (A) in the rational pertur-
bative setting, when the potential F' is even.

For this, we also recall that

(63) Ae 20,
due to the minimality of u.

Proposition 18. Let F be an even function, and suppose that h satisfies
(64) h(z) (vF)"(z) dz # 0.

R
Then, condition (A) is fulfilled by H = eh, for € small enough.



16 MATTEO NOVAGA AND ENRICO VALDINOCI

Proof. By Theorem 17 and (64), we have that A\X # 0, for € small enough. In fact, from (63),
we necessarily have that A¥ > 0, for € small enough.

Thus, AT is strictly positive, and lies in the discrete spectrum of the operator by Proposi-
tion 14. O

We now better clarify (64). Note that v+ and 7y~ are determined by h itself, in the sense
that h selects the translation of v+ from which uZ bifurcates. This selection occours due to
(59) and to the minimality of ur.
We introduce the notation

fi(z) = f(z + wt)
for a given function f and ¢ € R.
We observe that, if F is even, the two etheroclinic orbits v} and 7, are the same up to
sign-change and translation, that is we can write y© = 74+ and v~ = —vy- for a suitable
etheroclinic y and suitable % € R.
We consider the function
(65) R5t s F(t) = / h(z).(z) dz.

RE

The function F is periodic since h is periodic and w is rational. Also, condition (59) says
that

(66) FO)=0=F(0O).
In this spirit, we now prove that condition (A) is assured if these zeroes are non-degenerate:

Theorem 19. Let F be even and suppose that

(67) {F=0}n{F =0}=0.
Then, condition (A) holds true for H = eh, and e small enough.
Proof. By (66) and (67),

(68) 04 F!(6%) = /

hyps dz = :I:/ h(yE)" dx
R

n n
w Rw

thence (64) is fulfilled. Recalling Proposition 18, we obtain the desired result. O

Remark 20. The proof of Theorem 19 also characterizes 67 and #~ according to the way F
cuts the abscissa. Indeed, from (61), (63), (66) and (68) we obtain

(69) 0" c {F=0}n{F >0} and 0~ c {F=0}n{F <0}

Remark 21. It would be suggestive to define the function

(70) RSt £(t) = / h(w)n(z) d
R

and to use critical points of £ instead of zeroes of F in Theorem 19.

Analogously, it would be nice to write (69) by charachterizing #* in terms of the minimality

or maximality attained by £.

Notice that these are only formal statements, since the integral in (70) does not converge in

general.
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Theorem 19 easily gives concrete examples of h’s for which Theorem 6 applies:

Corollary 22. Let k > 0, F be an even double-well potential and F = kF. Given w € 8",
we let

hy(t) == h(z)dz, Vte R
Qtw

Suppose that h € C1(R"/Z™) and that
(71) {hy =0} N{R, =0} = 0.

Then, there exists 0 > 0 such that condition (A) holds true for H = eh, provided that € € (0,0)
and k > 1/6.

Proof. If 7 is the etheroclinic of F', then the etheroclinic of F is
v(z) =7 (z + (VEk — 1)(w, z)w) -
Accordingly, from (65) we get

1

72 ft:/ h(y—l—(——l) w,yw—tw)'y dy,
(72) (t) - NG (w,y) 7 (y)
and therefore

! 1 —1!

= 1 _

73) o)== [ oun(v+ (5 1) o —ts) 70 dy
We now claim
(74) that (67) holds if « is large enough.

The proof of (74) is by contradiction: if not, by (72) and (73), there would exist a diverging
sequnce x; and points ¢; € R for which

o= [.n (v+ (%ﬁ_ 1) oo = ) Y )y
(75) = [ o (v+ (%ﬁ_ 1) e — 1) 70

Since F is periodic, say of period 7, we may suppose that ¢; € [0, 7). Hence, there exists ¢, €
[0, 7] and a subsequence for which

lim t; =t,.
{—+o0 It *

Therefore, by (75) and the Dominated Convergence Theorem,

1 _ _
0 = —— h(z)dZ/ 7'(y)dy=/ h(y — (w, y)w — tw)¥ (v) dy
1Q-t.wl Ja_,,. R R
1
= [ Aty — () — )Y dy = —— [ Buh(z)d / ¥ (y) dy,
R 12—t Ja_,,. R~

that is
—t, € {hy = 0} N {R, = 0}.
This is in contradiction with (71) and thus proves (74).
Then, the desired claim follows from Theorem 19. O
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As an example, we observe that if, say w = (1,0,...,0), the function
h(z) = sin(27z1)

satisfies the assumption of Corollary 22 and so it gives rise to the multibump solutions of
Theorem 6.
More generally, when w = p/q, with 0 # p € Z™, 0 # g € N, a concrete example is given by

h(z) = sin(27p - z).

Also, the function
N
h(z) = Z sin(2mx;)
i=1
provides an example for any coordinate direction w =(1,0,...,0), (0,1,...,0),...,(0,0,...,1).
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