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Università di Pisa
Largo Bruno Pontecorvo 5

I-56127 Pisa, Italy

Enrico Valdinoci

Weierstraß Institut für Angewandte Analysis und Stochastik

Hausvogteiplatz 11A

D-10117 Berlin, Germany
and

Dipartimento di Matematica

Università di Milano
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Abstract. In 1978 E. De Giorgi formulated a conjecture concerning the one-

dimensional symmetry of bounded solutions to the elliptic equation ∆u =

F ′(u), which are monotone in some direction. In this paper we prove the anal-
ogous statement for the equation ∆u−〈x,∇u〉u = F ′(u), where the Laplacian

is replaced by the Ornstein-Uhlenbeck operator. Our theorem holds without

any restriction on the dimension of the ambient space, and this allows us to
obtain an similar result in infinite dimensions by a limit procedure.

1. Introduction. A celebrated conjecture by De Giorgi [6] asks if bounded entire
solutions to the equation

∆u = u3 − u (1)

which are strictly increasing in some direction are one-dimensional, in the sense that
the level sets {u = λ} are hyperplanes, at least if n ≤ 8. This conjecture has been
proved by Ghoussoub and Gui [14] in dimension n = 2, and by Ambrosio and Cabré
[2] in dimension n = 3, and a counterexample has been given by del Pino, Kowalczyk
and Wei in [7] for n ≥ 9. While the conjecture is still open for 4 ≤ n ≤ 8, a very
nice proof has been presented by O. Savin [17] under the additional assumption that
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u connects −1 to 1 along the direction where it increases. See also [4] for another
proof in dimension n = 2 and [12] for a review on the subject.

In this paper, we are interested in a variant of (1) where the Laplacian ∆ is
substituted by the Ornstein-Uhlenbeck operator ∆ − 〈x,∇〉. Namely, we consider
the semilinear elliptic equation

∆u− 〈x,∇u〉+ f(u) = 0 (2)

and show the one-dimensional symmetry of bounded entire solutions which are
monotone in some direction.

Let us state our main result.

Theorem 1.1. Let n ∈ N, α ∈ (0, 1). Let u ∈ C2(Rn) ∩ L∞(Rn) be a solution of

∆u− 〈x,∇u〉+ f(u) = 0 in Rn,

where f : R→ R is a locally Lipschitz function. Assume that

〈∇u(x), w〉 > 0 for any x ∈ Rn (3)

for some w ∈ Rn. Then, u is one-dimensional, i.e. there exist U : R → R and
ω ∈ Rn such that

u(x) = U(〈ω, x〉)
for any x ∈ Rn.

Notice that (2) can be regarded as the analog of (1) in the so-called Gauss space,
that is, in Rn endowed with the Gaussian instead of the Lebesgue measure. Indeed,
while the Pde in (1) is the Euler-Lagrange equation of the Allen-Cahn Energy∫

Rn

(
|∇u|2

2
+

(u2 − 1)2

4

)
dx , (4)

the Pde in (2) is the Euler-Lagrange equation of the functional∫
Rn

(
|∇u|2

2
+ F (u)

)
dγ(x) , (5)

where F ′ = −f and

dγ(x) = γ(x)dx =
e−|x|

2/2

(2π)n/2
dx (6)

is the standard Gaussian probability measure. It is interesting to remark that
Theorem 1.1 holds for general type of nonlinearities, as it happens for the conjecture
of De Giorgi when n ≤ 3 (see [1], and this is a major difference with respect to the
techniques in [17]).

As in the case of the Laplacian, Theorem 1.1 is closely related to the Bernstein
problem in the Gauss space, which asks for flatness of entire minimal surfaces which
are graphs in some direction. We point out that minimal surfaces in the Gauss space
are interesting geometric objects, since they correspond to self-similar shrinkers of
the mean curvature flow (see for instance [8]), and satisfy the equation

κ = 〈x, ν〉 (7)

where κ is the mean curvature at x and ν is the normal vector. In this context,
the analog of the Bernstein Theorem has been proved by Ecker and Huisken [8],
under a polynomial growth assumption on the volume of the minimal surface, and
more recently by Wang in [20] without any further assumption. We point out that,
differently from the Euclidean case, the result holds without any restriction on
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the dimension of the ambient space, and in fact there is no such restriction also
in Theorem 1.1. This is due to the exponential decay of the Gaussian measure
associated to the Ornstein-Uhlenbeck operator which allows for better estimates
than the corresponding Euclidean ones.

Since Theorem 1.1 holds in any dimension and the Gauss space (Rn, γ) formally
converges to a Wiener space (X,H, γ) (see Section 2.1 for a precise definition) as
n→∞, one may expect that an analogous result holds in such infinite dimensional
setting. Indeed, in this paper we confirm this expectation and show the infinite
dimensional extension of Theorem 1.1:

Theorem 1.2. Let u ∈ C1(X) ∩ L∞(X) satisfy

∆γu = f(u) (8)

where f : R→ R is a locally Lipschitz function. Assume that

∂i∂ju ∈ C(X) for all i, j ∈ N (9)

and
inf
x∈BR

[∇u(x), w] > 0 (10)

for all x ∈ X, for all R > 0 and for some w ∈ H. Then, u is one-dimensional, in
the sense that there exist U : R→ R and ω ∈ X∗ such that

u(x) = U(〈ω, x〉) for all x ∈ X. (11)

Notice that Theorem 1.1 can be recovered as a corollary of Theorem 1.2, when the
function u depends only on finitely many variables. As far as we know, Theorem 1.1
is the first result of De Giorgi conjecture type in an infinite dimensional setting.
The proof that we perform exploits and generalizes some geometric ideas of [18, 19,
10, 11].

2. Notation. We denote by (Rn, γ) the n-dimensional Gauss space, where γ is the
standard Gaussian measure on Rn defined in (6).

2.1. The Wiener space. An abstract Wiener space is defined as a triple (X, γ,H)
where X is a separable Banach space, endowed with the norm ‖·‖X , γ is a nondegen-
erate centered Gaussian measure, and H is the Cameron–Martin space associated
to the measure γ, that is, H is a separable Hilbert space densely embedded in X,
endowed with the inner product [·, ·]H and with the norm | · |H . The requirement
that γ is a centered Gaussian measure means that for any x∗ ∈ X∗, the measure
x∗#γ is a centered Gaussian measure on the real line R, that is, the Fourier transform
of γ is given by

γ̂(x∗) =

∫
X

e−i〈x,x
∗〉dγ(x) = exp

(
−〈Qx

∗, x∗〉
2

)
, ∀x∗ ∈ X∗;

here the operator Q ∈ L(X∗, X) is the covariance operator and it is uniquely de-
termined by formula

〈Qx∗, y∗〉 =

∫
X

〈x, x∗〉〈x, y∗〉dγ(x), ∀x∗, y∗ ∈ X∗.

The nondegeneracy of γ implies that Q is positive definite: the boundedness of Q
follows by Fernique’s Theorem (see for instance [5, Theorem 2.8.5]), asserting that
there exists a positive number β > 0 such that∫

X

eβ‖x‖
2

dγ(x) < +∞.
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This implies also that the maps x 7→ 〈x, x∗〉 belong to Lpγ(X) for any x∗ ∈ X∗ and
p ∈ [1,+∞), where Lpγ(X) denotes the space of all functions f : X → R such that∫

X

|f(x)|pdγ(x) < +∞.

In particular, any element x∗ ∈ X∗ can be seen as a map x∗ ∈ L2
γ(X), and we

denote by R∗ : X∗ → H the identification map R∗x∗(x) := 〈x, x∗〉. The space H
given by the closure of R∗X∗ in L2

γ(X) is called reproducing kernel. By considering
the map R : H → X defined as

Rĥ :=

∫
X

ĥ(x)xdγ(x),

we obtain that R is an injective γ–Radonifying operator, which is Hilbert–Schmidt
when X is Hilbert. We also have Q = RR∗ : X∗ → X. The space H := RH,
equipped with the inner product [·, ·]H and norm | · |H induced by H via R, is the
Cameron-Martin space and is a dense subspace of X. The continuity of R implies
that the embedding of H in X is continuous, that is, there exists c > 0 such that

‖h‖X ≤ c|h|H , ∀h ∈ H.

We have also that the measure γ is absolutely continuous with respect to transla-
tion along Cameron–Martin directions; in fact, for h ∈ H, h = Qx∗, the measure
γh(B) = γ(B − h) is absolutely continuous with respect to γ with density given by

dγh(x) = exp

(
〈x, x∗〉 − 1

2
|h|2H

)
dγ(x). (12)

2.2. Cylindrical functions and differential operators. For j ∈ N we choose

x∗j ∈ X∗ in such a way that ĥj := R∗x∗j , or equivalently hj := Rĥj = Qx∗j ,
form an orthonormal basis of H. We order the vectors x∗j in such a way that the

numbers λj := ‖x∗j‖
−2
X∗ form a non-increasing sequence. Given m ∈ N, we also let

Hm := 〈h1, . . . , hm〉 ⊆ H, and Πm : X → Hm be the closure of the orthogonal
projection from H to Hm

Πm(x) :=

m∑
j=1

〈
x, x∗j

〉
hj x ∈ X.

The map Πm induces the decomposition X ' Hm⊕X⊥m, with X⊥m := ker(Πm), and
γ = γm ⊗ γ⊥m, with γm and γ⊥m Gaussian measures on Hm and X⊥m respectively,
having Hm and H⊥m as Cameron–Martin spaces. When no confusion is possible
we identify Hm with Rm; with this identification the measure γm = Πm#γ is the
standard Gaussian measure on Rm (see [5]). Given x ∈ X, we denote by xm ∈ Hm

the projection Πm(x), and by xm ∈ X⊥m the infinite dimensional component of
x, so that x = xm + xm. When we identify Hm with Rm we shall rather write
x = (xm, xm) ∈ Rm ⊕X⊥m.

We say that u : X → R is a cylindrical function if u(x) = v(Πm(x)) for some

m ∈ N and v : Rm → R. We denote by FCkb (X), k ∈ N, the space of all Ckb
cylindrical functions, that is, functions of the form v(Πm(x)) with v ∈ Ck(Rn), with

continuous and bounded derivatives up to the order k. We denote by FCkb (X,H)

the space generated by all functions of the form uh, with u ∈ FCkb (X) and h ∈ H.
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We let

∇γu :=
∑
j∈N ∂juhj for u ∈ FC1

b(X)

divγϕ :=
∑
j≥1 ∂

∗
j [ϕ, hj ]H for ϕ ∈ FC1

b(X,H)

∆γu := divγ∇γu for u ∈ FC2
b(X)

where ∂j := ∂hj
and ∂∗j := ∂j− ĥj is the adjoint operator of ∂j . With this notation,

the integration by parts formula holds:∫
X

udivγϕdγ = −
∫
X

[∇γu, ϕ]H dγ ∀ϕ ∈ FC1
b(X,H). (13)

In particular, thanks to (13), the operator ∇γ is closable in Lpγ(X), and we denote

by W 1,p
γ (X) the domain of its closure. The Sobolev spaces W k,p

γ (X), with k ∈ N
and p ∈ [1,+∞], can be defined analogously [5], and FCkb (X) is dense in W j,p

γ (X),
for all p < +∞ and k, j ∈ N with k ≥ j.

Given a vector field ϕ ∈ Lpγ(X,H), p ∈ (1,∞], using (13) we can define divγ ϕ in

the distributional sense, taking test functions u in W 1,q
γ (X) with 1

p + 1
q = 1. We say

that divγ ϕ ∈ Lpγ(X) if this linear functional can be extended to all test functions

u ∈ Lqγ(X). This is true in particular if ϕ ∈W 1,p
γ (X,H).

Let u ∈ W 2,2
γ (X), ψ ∈ FC1

b(X) and i, j ∈ N. From (13), with u = ∂ju and
ϕ = ψhi, we get ∫

X

∂ju ∂iψ dγ =

∫
X

−∂j(∂iu)ψ + ∂juψ〈x∗i , x〉dγ (14)

Let now ϕ ∈ FC1
b(X,H). If we apply (14) with ψ = [ϕ, hj ] =: ϕj , we obtain∫
X

∂ju ∂iϕ
j dγ =

∫
X

−∂j(∂iu)ϕj + ∂juϕ
j〈x∗i , x〉dγ

which, summing up in j, gives∫
X

[∇γu, ∂iϕ] dγ =

∫
X

−[∇γ(∂iu), ϕ] + [∇γu, ϕ]〈x∗i , x〉dγ ∀ϕ ∈ FC1
b(X,H).

(15)
The operator ∆γ : W 2,p

γ (X) → Lpγ(X) is usually called the Ornstein-Uhlenbeck
operator. Notice that, if u is a cylindrical function, that is u(x) = v(y) with y =
Πm(x) ∈ Rm and m ∈ N, then

∆γu =

m∑
j=1

∂jju− 〈x∗j , x〉∂ju = ∆v − 〈y,∇v〉Rm . (16)

We write u ∈ C(X) if u : X → R is continuous and u ∈ C1(X) if both u : X → R
and ∇γu : X → H are continuous.

For simplicity of notation, from now on we will omit the explicit dependence on
γ of operators and spaces. We also indicate by [·, ·] and | · | respectively the scalar
product and the norm in H. When no confusion is possible, we shall also write ui
to indicate the derivative ∂iu.
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3. Proof of Theorem 1.2. Recalling the integration by parts formula (13), equa-
tion (8) can be written in a weak form as∫

X

[∇u,∇ϕ]− f(u)ϕdγ = 0 for any ϕ ∈W 1,2(X) (17)

which is meaningful for u ∈W 1,2(X). Notice that, as FC1
b(X) is dense in W 1,2(X),

it is enough to require (17) for all ϕ ∈ FC1
b(X).

Remark 3.1. Since L∞(X) ⊂ L2(X), by [16, Th. 4.1] we have that a bounded
weak solution of (8) belongs to W 2,2(X).

3.1. The linearized equation. We now consider the equation solved by the deriva-
tives of the solution u.

Lemma 3.2. Let u ∈W 2,2(X) satisfy (8). For any i ∈ N let ui = ∂iu ∈W 1,2(X),
then ∫

X

[∇ui,∇ϕ]− f ′(u)uiϕ+ uiϕdγ = 0 for any ϕ ∈W 1,2(X). (18)

Proof. Notice first that it is enough to prove (18) for all ϕ ∈ FC2
b(X). Letting

ϕ ∈ FC2
b(X), we multiply (8) by ϕi and recall (15), to get

0 =

∫
X

[∇u,∇ϕi]− f(u)ϕi dγ

=

∫
X

−[∇ui,∇ϕ] + 〈x∗i , x〉[∇u,∇ϕ]− f(u)ϕi dγ

=

∫
X

−[∇ui,∇ϕ] + 〈x∗i , x〉[∇u,∇ϕ] + f ′(u)uiϕ− 〈x∗i , x〉xif(u)ϕdγ

=

∫
X

−[∇ui,∇ϕ] + [∇u,∇(〈x∗i , x〉ϕ)− ϕ∇〈x∗i , x〉] + f ′(u)uiϕ

−〈x∗i , x〉xif(u)ϕdγ

=

∫
X

−[∇ui,∇ϕ]− ϕ[∇u,∇〈x∗i , x〉] + f ′(u)uiϕdγ,

where the last inequality follows from (17), with ϕ replaced by 〈x∗i , x〉ϕ.

3.2. A variational inequality implied by the monotonicity. The next result
shows that monotone solutions of (8) satisfy a variational inequality. In the Eu-
clidean case, this fact boils down to the classical stability condition (namely, the
second derivative of the energy functional being nonnegative). Differently from this,
in our case, a negative eigenvalue appears in the inequality.

Lemma 3.3. Let u ∈ W 2,2(X) satisfy (8) and (10). Then, for any ϕ ∈ W 1,2(X)
it holds ∫

X

|∇ϕ|2 − f ′(u)ϕ2 dγ ≥ −
∫
X

ϕ2 dγ. (19)

Proof. The proof is a variation of a classical technique (see, e.g., [1, 11]).
Without loss of generality we may assume w = h1, and we let ϕ ∈ W 1,2(X)

be such that ϕ2/u1 ∈ W 1,2(X). Notice that, thanks to (10), the space of such
functions is dense in W 1,2(X). We use (18), with i = 1 and test function ϕ2/u1,
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and we obtain ∫
X

f ′(u)ϕ2 − ϕ2 dγ

=

∫
X

[∇u1,∇(ϕ2/u1)] dγ

=

∫
X

2(ϕ/u1)[∇u1,∇ϕ]− (ϕ/u1)2|∇u1|2 dγ

=

∫
X

|∇ϕ|2 −
∣∣∣(ϕ/u1)∇u1 −∇ϕ

∣∣∣2 dγ
≤
∫
X

|∇ϕ|2 dγ.

3.3. A geometric Poincaré inequality. Now we show that a suitable geometric
Poincaré inequality stems naturally from solutions of (8) satisfying (19). In the
Euclidean case, it boils down to the inequality discovered in [18, 19].

Lemma 3.4. Let u ∈ W 2,2(X) satisfy (8) and (19). For any ϕ ∈ W 1,∞(X) we
have ∫

X

(
|∇2u|2 −

∣∣∇|∇u|∣∣2)ϕ2 dγ ≤
∫
X

|∇u|2|∇ϕ|2 dγ (20)

where

|∇2u|2 :=
∑
i,j

u2ij .

Proof. We use (19) with test function |∇u|ϕ, and we see that∫
X

(
f ′(u)− 1

)
|∇u|2ϕ2 dγ

≤
∫
X

∣∣∇(|∇u|ϕ)
∣∣2 dγ

=

∫
X

ϕ2
∣∣∇|∇u|∣∣2 + |∇u|2|∇ϕ|2 + 2[∇|∇u|,∇ϕ] |∇u|ϕdγ

=

∫
X

ϕ2
∣∣∇|∇u|∣∣2 + |∇u|2|∇ϕ|2 +

1

2
[∇|∇u|2,∇ϕ2] dγ.

(21)

We now exploit (18) with test function uiϕ
2 and we get∫

X

(
f ′(u)− 1

)
u2iϕ

2 dγ

=

∫
X

[∇ui,∇(uiϕ
2)] dγ

=

∫
X

|∇ui|2ϕ2 + ui[∇ui,∇ϕ2] dγ

=

∫
X

|∇ui|2ϕ2 +
1

2
[∇u2i ,∇ϕ2] dγ.

Summing over i ∈ N, we conclude that∫
X

(
f ′(u)− 1

)
|∇u|2ϕ2 dγ

=

∫
X

|∇2u|2ϕ2 +
1

2
[∇|∇u|2,∇ϕ2] dγ.

(22)
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From (21) and (22), we conclude that∫
X

|∇2u|2ϕ2 +
1

2
[∇|∇u|2,∇ϕ2] dγ

≤
∫
X

ϕ2
∣∣∇|∇u|∣∣2 + |∇u|2|∇ϕ|2 +

1

2
[∇|∇u|2,∇ϕ2] dγ

which gives (20).

Let u ∈ C1(X) ∩ L∞(X) satisfying (9), let N ∈ N and xN ∈ X⊥N . We consider
the map ψN,xN

: RN → R defined as ψN,xN
(xN ) := u(xN , xN ), and let

NN (xN ) :=
{
xN ∈ RN : ∇ψN,xN

(xN ) 6= 0
}

=
{
xN ∈ RN : ∃ i ∈ {1, . . . , N} such that ui(xN , xN ) 6= 0

}
be its noncritical set. By the Implicit Function Theorem, the level set of ψN,xN

in
NN (xN ) are (N − 1)-dimensional hypersurfaces of class C2. Thus we can consider
the principal curvatures of these hypersurfaces, that we denote by κ1,N , . . . , κN−1,N ,
and the tangential gradient of ψN,xN

1, that we denote by ∇T,N . We also set

∇N u := ΠN∇u = ∇ψN,xN
, ∇2

Nu := ∇N
(
∇Nu

)
= ∇2ψN,xN

,

KN :=

√√√√N−1∑
i=1

κ2i,N

and

NN :=
{
x = (xN , xN ) ∈ X : xN ∈ NN (xN )

}
=
{
x ∈ X : ∇Nu(x) 6= 0

}
.

With this notation, we have the following

Lemma 3.5. Let u ∈ C1(X) ∩ L∞(X) satisfy (8), (9) and (19), and fix N ∈ N.
For any ϕ ∈W 1,∞(X) we have∫

NN

(
|∇Nu|2K2

N +
∣∣∇T,N |∇Nu|∣∣2)ϕ2 dγ

≤
∫
X

(
|∇2u|2 −

∣∣∇|∇u|∣∣2)ϕ2 dγ

≤
∫
X

|∇u|2|∇ϕ|2 dγ.

(23)

Proof. Let

DN := |∇2
Nu|2 −

∣∣∇N |∇Nu|∣∣2
=

∑
1≤i,j≤N

u2ij −
∑

1≤i≤N

[
∇Nu
|∇Nu|

,∇Nui
]2

=
∑

1≤i,j≤N

(
u2ij −

(
ujuij
|∇Nu|

)2
)
.

Since |∇N−1u| ≤ |∇Nu| and∣∣∣∣ ujuij|∇Nu|

∣∣∣∣ ≤ |uj |
|∇Nu|

|uij | ≤ |uij |

1The tangential gradient of a function g along a hypersurface with normal ν is ∇g− (∇g · ν)ν,
that is, the tangential component of the full gradient
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for any i, j ≤ N , it follows that

DN −DN−1 ≥
∑

N−1≤i,j≤N

max(i,j)=N

(
u2ij −

(
ujuij
|∇Nu|

)2
)
≥ 0

so that DN is non-decreasing in N . Accordingly,

|∇2u|2 −
∣∣∇|∇u|∣∣2 = lim

M→+∞
DM ≥ DN (24)

for any N ∈ N. Moreover, by Stampacchia’s Theorem we have that ∇N |∇Nu| = 0
for almost any xN ∈ RN \ NN (xN ), and similarly uij = 0 for almost any xN ∈
RN \ NN (xN ). Therefore

DN = |∇2
Nu|2 −

∣∣∇N |∇Nu|∣∣2 = 0 for almost any xN ∈ RN \ NN (xN ). (25)

On the other hand, by [19, Formula (2.1)],

DN = |∇Nu|2K2
N +

∣∣∇T,N |∇Nu|∣∣2 when xN ∈ NN (xN ).

From this, (24) and (25), we obtain∫
X

(
|∇2u|2 −

∣∣∇|∇u|∣∣2)ϕ2 dγ

≥
∫
X

DNϕ2 dγ

=

∫
NN

DNϕ2 dγ

=

∫
NN

(
|∇Nu|2K2

N +
∣∣∇T,N |∇Nu|∣∣2)ϕ2 dγ ,

which, recalling (20), implies (23).

3.4. A symmetry result. We now use the previous material to obtain a one-
dimensional symmetry result for the N -dimensional projection of the solution. The
idea of using geometric Poincaré inequalities as the ones in [18, 19] in order to obtain
symmetry properties goes back to [10] and it was widely used in [11] in the finite
dimensional Euclidean setting. The result we present here is the following:

Proposition 3.6. Fix N ∈ N and xN ∈ X⊥N . Let u ∈ C1(X) ∩L∞(X) satisfy (8),
(9) and (19). Then, the map ψN,xN

is one-dimensional, i.e. there exists UN,xN
:

R→ R and ωN,xN
∈ RN , with |ωN,xN

| = 1, such that

u(xN , xN ) = UN,xN

(
〈ωN,xN

, xN 〉
)

(26)

for any xN ∈ RN .

Proof. We fix R > 1, to be taken arbitrarily large in what follows, and let Λ =
maxi λi. Let Φ ∈ C∞(R) be such that Φ(t) = 1 if t ≤ R, Φ(t) = 0 if t ≥ R + 1
and |Φ′(t)| ≤ 3 for any t ∈ [R,R + 1]. We take ϕ(x) := Φ(|x|). Then |∇ϕ(x)| ≤√

Λ |Φ′(|x|)| ≤ 3
√

Λ, and (23) yields∫
NN∩{|x|≤R}

|∇Nu|2K2
N +

∣∣∇T,N |∇Nu|∣∣2 dγ ≤ 9Λ

∫
{R≤|x|≤R+1}

|∇u|2 dγ. (27)
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Also, due to our assumptions on u,∫
X

|∇u|2 dγ < +∞.

Therefore, by sending R→ +∞ in (27), we conclude that

|∇Nu|2K2
N +

∣∣∇T,N |∇Nu|∣∣2 = 0

for any x ∈ NN . From this and [11, Lemma 2.11] we get (26).

From the finite dimensional symmetry result of Proposition 3.6, one can take the
limit as N → +∞ and obtain:

Corollary 3.7. Let u ∈ C1(X) ∩ L∞(X) satisfy (8), (9) and (19). Then, u is
necessarily one-dimensional, i.e. there exists U : R→ R and ω ∈ X∗ such that

u(x) = U(〈ω, x〉)

for any x ∈ X.

Proof. We first show that there exists h ∈ H such that

∇u
|∇u|

= h in N :=
{
x ∈ X : ∇u(x) 6= 0

}
=
⋃
N∈N
NN . (28)

Let V ⊂ X be defined as V = ∪NHN . Since V is a dense subset of X, it is enough
to show that (28) holds in N ∩ V = ∪NVN , where VN := NN ∩HN .

However, from Proposition 3.6 we know that

∇Nu
|∇Nu|

= ωN,0 in VN , (29)

which implies that

∇u
|∇u|

= lim
N→∞

∇Nu
|∇Nu|

= lim
N→∞

ωN,0 =: h in V.

From (28) it follows that there exists a function U : R→ R such that U(t) = u(th)
for all t ∈ R, and

u(x) = U(ĥ(x)) x ∈ X. (30)

Moreover, U is a bounded non-decreasing solution to the ODE

U ′′ − t U ′ + f(U) = 0 t ∈ R.

Being u continuous, if U is nonconstant (otherwise the thesis follows immediately)

then the function ĥ is also continuous, so that h ∈ QX∗ and ĥ(x) = 〈ω, x〉 for some
ω ∈ X∗, which implies the thesis.

3.5. Proof of Theorem 1.2. The proof of Theorem 1.2 follows directly from
Lemma 3.3 and Corollary 3.7.

Remark 3.8. We observe that, in the infinite dimensional case, there may exist
weak solutions to (8), satisfying (10), which are not continuous. Indeed, given

U : R→ R satisfying (31) and (32) below, the function u(x) = U(ĥ(x)) in (30) is a
solution to (8), monotone in the direction given by h, for any h ∈ H. However, such
a solution is continuous only if h ∈ QX∗. As a possible generalization of Theorem
1.2, one could ask if any bounded weak solution to (8), satisfying [∇u,w] > 0 for
some w ∈ H, is of this form.
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4. Heteroclinic solutions. The results in Theorems 1.1 and 1.2 may be seen
either as classification results (when one knows explicitly the solutions of the asso-
ciated one-dimensional problem) or as nonexistence result (when the associated
one-dimensional problem does not admit any solution). For this, we now give
some simple conditions on the nonlinearity f ensuring existence or nonexistence
of bounded solutions to the ODE

U ′′ − t U ′ + f(U) = 0 t ∈ R (31)

satisfying

U ′ > 0 t ∈ R. (32)

Notice that, from (32) it follows that there exist U± ∈ R, with U− < U+, such that

lim
t→±∞

U(t) = U±. (33)

Notice also that ∫ +∞

0

U ′(τ) dτ = U+ − U(0) < +∞.

Thanks to this and (32) we can apply Lemma A.4 with v := U ′ and obtain the
existence of a sequence θ+n → +∞ such that

lim
n→+∞

θ+nU
′(θ+n ) = 0 and lim

n→+∞
U ′′(θ+n ) = 0.

Similarly there is a sequence θ−n → −∞ such that

lim
n→+∞

θ−n U
′(θ−n ) = 0 and lim

n→+∞
U ′′(θ−n ) = 0.

Consequently, from (33) and (32) we can deduce that

f(U−) = f(U+) = 0. (34)

Now we state a nonexistence result.

Proposition 4.1. Assume that there exists U0 ∈ (U−, U+) such that

f ≥ 0 in [U−, U0] or f ≤ 0 in [U0, U
+].

Then, there are no solutions to (31) satisfying (32).

Proof. Let us assume that f ≤ 0 in [U0, U
+], since the argument is analogous in

the other case, and assume by contradiction that we are given a solution U of (31),
(32).

Letting t0 > 0 be such that u(t0) ∈ [U0, U
+], we have that U satisfies the

differential inequality

U ′′ ≥ t U ′ for all t ∈ [t0,+∞),

which implies, by direct integration,

U ′(t) ≥ U ′(t0)e(t
2−t20)/2 ≥ U ′(t0) > 0 for all t ∈ [t0,+∞),

contradicting (33).

We consider the potential F : R→ R, defined as

F (t) = −
∫ t

0

f(s) ds+ k .

where k ∈ R. Notice that, if F is convex or concave, from (34) if follows that f ≡ 0
in [U−, U+], so that by Proposition 4.1 there are no solutions to (31) satisfying (32).
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Given U : (0,+∞)→ R, we let

G(U) :=

∫ +∞

0

(
(U ′(t))2

2
+ F (U(t))

)
dγ(t) (35)

where dγ(t) = e−t
2/2dt. Notice that (31) is the Euler-Lagrange equation of G.

As a counterpart of the nonexistence result in Proposition 4.1, we now give an
existence result for monotone solutions to (31).

Proposition 4.2. Assume that F satisfies the following properties:

F (c) = F (−c) = 0 for some c > 0
F (r) > 0 for any r 6∈ {c,−c}
F (r) = F (−r) for any r ∈ [0,+∞).
f(r) = 0 iff r ∈ {c,−c, 0}.

(36)

Assume also that there exists U ∈W 1,2
γ ((0,+∞)) such that U(0) = 0 and

G(U) < G(0) =

√
π

2
F (0). (37)

Then, there exists a monotone solution to (31), connecting −c to c.

Proof. Let U be a solution to the minimum problem

min
{
G(U) : U ∈W 1,2

γ ((0,+∞)), U(0) = 0
}
. (38)

Note that (36) implies

G
(
min

(
|U |, c

))
≤ G

(
U
)
,

so that we may assume U(t) ∈ [0, c] for all t ∈ (0,+∞).

Let now U
?

be the Ehrhard rearrangement of U [9], which is defined in such a

way that U
?

is non-decreasing on (0,+∞), and

γ
({
t : U

?
(t) > r

})
= γ

({
t : U(t) > r

})
for all r ∈ (0, c).

Notice that U
?
(0) = 0 and U(t) ∈ [0, c] for all t ∈ (0,+∞). By [9] (see also [13,

Prop. 3.12]), we have U
? ∈W 1,2

γ ((0,+∞)) and∫ +∞

0

(U?′(t))2

2
dγ(t) ≤

∫ +∞

0

(U ′(t))2

2
dγ(t)∫ +∞

0

F (U?(t))dγ(t) =

∫ +∞

0

F (U(t))dγ(t),

so that

G
(
U
?) ≤ G(U).

In particular, we may assume that U = U
?
, i.e. that U is non-decreasing on (0,+∞).

As U = c and U = 0 are solutions to (31), which is the Euler-Lagrange equation
of G, we get that either U = 0 or U = c or

U(t) ∈ (0, c) for all t ∈ (0,+∞). (39)

On the other hand, thanks to (37) and the fact that U(0) = 0, we can exclude the
first two possibilities, so that (39) holds. Moreover, since U is non-decreasing and

f(r) 6= 0 for all r ∈ (0, c), it follows that U
′
(t) > 0 for all t ∈ (0,+∞) and

lim
t→+∞

U(t) = c.
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Since by (36) the function t→ −U(−t) is a monotone solution to (31) on (−∞, 0),
we get that the odd extension of U on R is a solution to (31) on the whole of R
which satisfies (32) and connects −c to c.

Remark 4.3. Notice that for all U ∈W 1,2
γ ((0,+∞)) we have

G(U) < G̃(U) :=

∫ +∞

0

(
(U ′(t))2

2
+ F (U(t))

)
dt.

If we let U be the unique solution to

U ′′(t) + f(U(t)) = 0 t ∈ (0,+∞)

U(0) = 0

lim
t→+∞

U(t) = c,

we have

G(U) < G̃(U) =

∫ c

0

√
2F (r) dr .

In particular, condition (37) is verified whenever∫ c

0

√
2F (r) dr ≤

√
π

2
F (0)

which is satisfied, for instance, by the standard double-well potential F (t) = (1 −
t2)2/4.

Appendix A. Asymptotics of functions of one variable. The purpose of this
appendix is to collect some observations that are elementary in nature but useful
for the proof of (34).

A.1. Asymptotics of monotone functions. We point out a simple result on the
limit of monotone functions:

Lemma A.1. Let to ∈ R and w : [to,+∞) → [0,+∞) be non-increasing. Suppose
that ∫ +∞

to

w(t) dt < +∞.

Then

lim
t→+∞

tw(t) = 0.

Proof. Suppose not. Then there exists c > 0 and a diverging sequence tn for which
tnw(tn) = |tnw(tn)| ≥ c. Up to a subseqence we may assume that tn > 2tn−1, that
is tn − tn−1 > tn/2. Also, by monotonicity, w(t) ≥ w(tn) for all t ∈ (tn−1, tn). We
obtain that ∫ +∞

to

w(t) dt ≥
+∞∑
n=2

∫ tn

tn−1

w(t) dt ≥
+∞∑
n=2

w(tn)(tn − tn−1)

≥
+∞∑
n=2

w(tn)tn/2 ≥
+∞∑
n=2

c/2 = +∞,

that is in contradition with our assumptions.
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A.2. The non-increasing lower envelope of a function. Now we introduce
the non-increasing lower envelop of a function v and we use it to deduce some
asymptotic properties. In this section, we take to ∈ R and v ∈ C([to,+∞)), and we
define its non-increasing lower envelope by

V (t) := min
[to,t]

v.

By construction V (t) ≤ v(t) for any t ∈ [to,+∞) and V is non-increasing. Also,

if v(t) > 0 for all t ≥ to, then V (t) > 0 for any t ≥ to. (40)

Lemma A.2. V ∈ C([to,+∞)).

Proof. Fix ε > 0 and a ≥ to. By the continuity of v, there exists δ > 0 such that for
any b ≥ to with |a− b| ≤ δ we have that |v(a)− v(b)| ≤ ε. Let A := min{a, b} and
B := max{a, b}. Notice that {A,B} = {a, b} and |A−B| = |a− b| ≤ δ, therefore

min
[A,B]

v ≥ v(A)− ε.

Then, using the monotonicity of V ,

|V (a)− V (b)| = |V (A)− V (B)| = V (A)− V (B) = min
[to,A]

v − min
[to,B]

v

= min
[to,A]

v −min
{

min
[to,A]

v, min
[A,B]

v
}

≤ min
[to,A]

v −min
{

min
[to,A]

v, v(A)− ε
}

≤ min
[to,A]

v −min
{

min
[to,A]

v, v(A)
}

+ ε

= min
[to,A]

v − min
[to,A]

v + ε = ε.

Lemma A.3. Suppose that v(t) > 0 for all t ≥ to and that∫ +∞

to

v(t) dt < +∞.

Then there exists a diverging sequence tn for which V (tn) = v(tn).

Proof. Suppose not. Then there exists t? > to such that V (t) < v(t) for all t ≥ t?
and so

min
[t?,t]

v > min
[t?,t]

V for all t ≥ t?.

Since V is non-increasing, we obtain that the latter quantity equals to V (t), hence

min
[t?,t]

v > V (t) = min
[to,t]

v for all t ≥ t?.

Consequently, for all t ≥ t?, the minimum of v in [to, t] is in fact attained in [to, t?].
Therefore

v(t) > V (t) = min
[to,t]

v = min
[to,t?]

v = V (t?)

for all t ≥ t?, and the latter quantity is strictly positive, thanks to (40). It follows
that ∫ +∞

to

v(t) dt ≥
∫ +∞

t?

v(t) dt ≥
∫ +∞

to

V (t?) dt = +∞,

that is in contradition with our assumptions.
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Lemma A.4. Suppose that v ∈ C1((to,+∞)), v(t) > 0 for all t ≥ to and that

∫ +∞

to

v(t) dt < +∞.

Then there exists a diverging sequence θn for which

lim
n→+∞

θnv(θn) = 0 and lim
n→+∞

v′(θn) = 0. (41)

Proof. First of all, we observe that

∫ +∞

to

V (t) dt ≤
∫ +∞

to

v(t) dt < +∞,

so by Lemma A.1

lim
t→+∞

tV (t) = 0. (42)

Now we take tn as in Lemma A.3: then we have that the set

In :=
{
T ≥ tn s.t. V (t) = v(t) for all t ∈ [tn, T ]

}
contains tn and so it is non-empty. Hence we can define

Tn := sup In ∈ [tn,+∞]. (43)

We distinguish two cases: either Tn?
= +∞ for some n? or Tn is always finite.

In the first case, we have that V (t) = v(t) for any t ≥ tn? and so v is non-
increasing and, from (42),

lim
t→+∞

tv(t) = 0. (44)

We show that v′(σn) is infinitesimal for an appropriate sequence σn. If this were
not true, then there exists t̃ > to and c > 0 such that −v′(t) = |v′(t)| ≥ c for any
t ≥ t̃. As a consequence

v(t) = v(t̃) +

∫ t

t̃

v′(τ) dτ ≤ v(t̃)− c(t− t̃) < 0

for t large, and this is against the positivity of v. This shows the existence of a
sequence for which v′(σn) is infinitesimal, that, together with (44), proves (41) in
the first case (here θn := σn).

It remains to prove (41) in the second case, that is we suppose that Tn is always
finite. Then Tn ∈ In due to the continuity of V (recall Lemma A.2), that is V (Tn) =
v(Tn). We show that

v′(Tn) = 0. (45)
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V

v

Tn

Suppose indeed that v′(Tn) > 0. Then, if we take t < Tn with t close enough to
Tn we obtain

V (Tn) = v(Tn) > v(t) ≥ V (t),

which is a contradiction since V is non-increasing. Similarly, if we suppose that
v′(Tn) < 0, we would have that v′ is strictly decreasing near Tn hence there would

be T̃n > Tn such that for any t ∈ [Tn, T̃n]

min
[Tn,t]

v < v(Tn) = V (Tn) = min
[to,Tn]

v

and so the minimum of v in [to, t] is attained in [Tn, t], for any t ∈ [Tn, T̃n]. Therefore

v(t) = min
[Tn,t]

v = min
[to,t]

v = V (t)

for any t ∈ [Tn, T̃n]. This would give that T̃n ∈ In and this contradicts (43). So
(45) is proved.

Also, by (42), we have

lim
n→+∞

Tnv(Tn) = lim
n→+∞

TnV (Tn) = 0. (46)

Putting together (45) and (46) we complete the proof of (41) in the second case
(here we take θn := Tn).
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