Complementi di Analisi Matematica, Anno Accademico 2005-2006, Laurea Specialistica in Informatica

V.M. Tortorelli

IV foglio di esercizi 18 aprile 2006

Registro degli argomenti svolti e materiale relativo al corso possono essere reperiti in rete all'indirizzo http://www.dm.unipi.it/didactics/home.html ivi selezionando il nome del corso.

Per ulteriori esercizi relativi ai primi elementi di calcolo differenziale vettoriale si veda tra gli altri Courant John, Vol.2 ch.1.1-1.8, A.4, 3.1-3.5.

ESERCIZIO n. 1 Calcolare le derivate prime delle seguenti funzioni nei punti (2,0,0), (1,1,0), (1,2,3) rispetto ad ognuna delle variabili:

 $e^{x^4y^2z} - xz\sin(xy) - 1;$ $\frac{xyz}{x^2+y^2+z^2};$ $\frac{\sin(xyz)}{x^2+y^2+z^2};$ $(x^2+z^2)\log(x^2+y^2);$ $\frac{x\sin zy}{200+zy\sin x};$ $\frac{x^2y^2}{x^2+y^4+1};$ calcolare quindi le funzioni derivate rispetto alla prima variabile delle stesse funzioni.

ESERCIZIO n. 2 Si scriva la matrice Jacobiana delle seguenti funzioni x+2y+3z, $(x+2y+3z,-x), (x+2y+3z,x^2-y^3+z^4), (e^{x+y+z+w},\sin(x+\log(1+y^2+w^6)-z),xyzw)$.

NOTA - per una funzione $\gamma: t \mapsto \gamma(t) = (x(t), y(t), z(t))$ da \mathbf{R} in \mathbf{R}^3 (o \mathbf{R}^2) le cui componenti sono derivabili, il vettore "velocità" dato dalle derivate all'istante t_0 se non nullo da la direzione tangente alla curva descritta dal cammino γ nel punto $\gamma(t_0)$.

- per una funzione $f:(x,y,z)\mapsto f(x,y,z)$ differenziabile in $P=(x_0,y_0,z_0)$, se non nullo il vettore delle derivate parziali valutate in $P\left(\frac{\partial f}{\partial x}(P),\frac{\partial f}{\partial y}(P),\frac{\partial f}{\partial z}(P),\right)$ è ortogonale nel punto P all'insieme di livello $\{(x,y,z): f(x,y,z)=f(P)\}.$

ESERCIZIO n.3 - Si trovi la tangente nel punto (1,1) dell'insieme di punti del piano definito da $x^7 + y^7 - 2 = 0$

- Si trovi l'angolo di incidenza in (1,1) tra le due curve $y=x, y=\frac{\sqrt{3}}{2}x^2$.
- Si calcolino seno e coseno dell'angolo di incidenza in (1,1) tra le due curve $(x^3, x^7), (x^5, x^9)$.
- Si trovi la normale nel punto (1,1,2) alla superifice immagine di $(u,v)\mapsto (v\cos u,v\sin u,v^2),\ v>0$
- Si trovino le tangenti nel punto (0,0) dell'insieme del piano definito da $(x^2+y^2)^2 = 2(x^2-y^2)$.
- Si trovi il piano tangente alla sfera di centro (1,1,1) e raggio 1 in $(1,\frac{1}{2},1+\frac{\sqrt{3}}{2})$.
- Si trovi la retta ortogonale alla regione $\{(x,y,z): \log(x^2+y^2+e)=e^z\}$ in (0,0,1).
- Si trovi il tangente nel punto (1,1,-1) dell'insieme di punti definito da $x^7+2y^7+z^7-2=0$ e $x^5+2y^5+z^3-2=0$
- Si trovino le tangenti nel punto (0,0,0) dell'insieme definito da $(x^2+y^2+z^2)^2=2(x^2-y^2-z^2)$ e $x-y^2-z^2=0$.
- Si calcoli l'angolo di incidenza che formano le seguenti coppie di regioni dello spazio incontrandosi nei punti rispettivamente indicati:

```
 \begin{array}{l} \{(x,y,z):\ 2x^4+3y^3-4z^2=-4\},\ \{(x,y,z):\ 1+x^2+y^2=z^2\},\ (0,0,1);\\ \{(x,y,z):x^2+y^2=e^z\},\ \{(x,y,z):x^2+z^2=e^y\},\ (1,0,0);\\ \{(x,y,z):\ xy=z\ \},\ \{(x,y,z):\ \cos(2\pi xy)=z\},\ (1,1,1). \end{array}
```

ESERCIZIO n. 4 Si disegnino le curve $2y^2 - x(x-1)^2 = 0$ e $(x^2 + y^2)^2 = 2(x^2 - y^2)$,

ESERCIZIO n. 5 - Per la curva in \mathbb{R}^3 $t\mapsto (\cos t,\sin t,t),\ 0\leq t\leq 2\pi$ la tangente non è mai parallela al segmento tra i due estremi

- * Si mostri che in una curva piana differenziabile ogni corda ha una direzione tangente parallela.

ESERCIZIO n. 6 Si studino la continuità, la derivabilità nelle diverse direzioni, e la differenziabilità delle seguenti funzioni:

$$\sqrt{|xy|}; \quad \sqrt{|x|}\cos y; \quad f(x,y) = \begin{cases} \frac{y^3}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}; \quad f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases};$$

$$f(x,y) = \begin{cases} \frac{y^2}{x}e^{-\frac{y^2}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}; \quad \int_0^y f(t,x)dt, \quad f \in \mathcal{C}^1(\mathbf{R}^2);$$

$$ESERCIZIO \text{ n. 7 Sia } f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

$$b - \text{Si provi che le derivate di } f \text{ in } \mathbf{R} \setminus \{0\} \text{ sono del tipo funzione razionale moltiplicato } f.$$

c - Si provi che f è derivabile infinite volte in x = 0.

c - Si provi che f è derivanne manno d- Si studi se la funzione $f(x,y)=\left\{ egin{array}{c} \frac{y^2}{x^3}e^{-\frac{y^2}{x^4}} & x\neq 0 \\ 0 & x=0 \end{array} \right.$

ha derivate parziali in ogni punto e si studi la differenziabilità in (0,0).

ESERCIZIO n. 8 Sia $f: \mathbf{R}^n \mapsto \mathbf{R}$ differenziabile ovunque e sia x_0 tale che $\nabla f(x_0) \neq 0$. Dimostrare che la direzione u rispetto a cui:

$$\frac{\partial f}{\partial u}\Big|_{x_0} = \max\left\{\frac{\partial f}{\partial v}\Big|_{x_0}: \ v \in \mathbf{R}^n, \|v\| = 1\right\} \ \text{\'e data da} \ u = \frac{\nabla f(x_0)}{\|\nabla f(x_0)\|}.$$

ESERCIZIO n. 9 Sia $f \in C^1(A)$, con A aperto. Dimostrare che f é positivamente omogenea di grado α (i.e. $f(tx) = t^{\alpha} f(x)$ per ogni $x \in A$) se e solo se $\alpha f(x) = \sum_{i=1}^{n} x_i f_{x_i}(x)$.

ESERCIZIO n. 10 Dato $C \subseteq \mathbb{R}^2$ si definisce la funzione distanza da C come segue:

$$d_C(x,y) = \inf_{(a,b) \in C} \sqrt{|x-a|^2 + |y-b|^2}$$

Si descrivano, nei seguenti casi, le regioni del piano ove d_C é differenziabile:

(a)
$$C = \{(0,0)\};$$
 (b) $C = \{(-1,0),(0,1)\};$ (c) $C = \{(-1,0)\} \cup \{(1,b): b \in \mathbf{R}\};$ (d) $C = \{(-1,0)\} \cup \{(a,b): (a+1)^2 + b^2 = 1\}.$

ESERCIZIO n. 11 - Sia $f: \mathbf{R}^2 \mapsto \mathbf{R}$ differenziabile ovunque e sia $F: \mathbf{R}^+ \times \mathbf{R} \mapsto \mathbf{R}$ definita da: $F(\rho,\varphi) = f(\rho\cos\varphi,\rho\sin\varphi)$. Verificare che: $(F_{\rho}(\rho,\varphi))^2 + \frac{1}{e^2}(F_{\varphi}(\rho,\varphi))^2 =$ $(f_x(x,y))^2 + (f_y(x,y))^2$ dove $x = \rho \cos \varphi$ e $y = \rho \sin \varphi$.

- Sia $f: \mathbf{R}^3 \to \mathbf{R}$ differenziabile ovunque e sia $F: \mathbf{R}^+ \times \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ definita da: $F(R, \varphi, \theta) =$ $f(R\cos\theta\cos\varphi,R\cos\theta\sin\varphi,R\sin\theta)$. Si calcolino le derivate di F in funzione di quelle di f.

ESERCIZIO n. 12 Sia $g = \frac{\partial f}{\partial y} - \frac{\partial^2 f}{\partial x^2}$. Dato il cambio di coordinate $(u, v) = (x, \frac{x}{\sqrt{y}})$, esprimere g(x, y) in funzione di $u \in v$.

ESERCIZIO n. 13 Si consideri la funzione $f(x,y) = \begin{cases} xy\frac{x^2-y^2}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$. Si provi che non è due volte differenziabile in (0,0)

ESERCIZIO n. 14 Si provi che $(\varphi, z) \mapsto (R\cos\frac{\varphi}{R}, R\sin\frac{\varphi}{R}, z)$ conserva i prodotti scalari tra le velocità di cammini (e quindi l'angolo e il modulo).

ESERCIZIO n. 15 - Si provi che una trasformazione lineare da \mathbb{R}^2 in \mathbb{R}^3 conserva gli angoli tra vettori se e solo se i trasformati della base canonica sono ortogonali e di egual lunghezza. Si deduca che una trasformazione differenziabile f tra due aperti del piano conserva gli angoli tra curve incidenti in un punto P se e solo se $D_p f$ conserva gli angoli tra vettori.

- -Si deduca che, se $t \mapsto s(t) \in]-1, 1[$ è una funzione derivabile strettamente crescente, $(\varphi, t) \mapsto (\sqrt{1-s^2(t)}\cos\varphi, \sqrt{1-s^2(t)}\sin\varphi, s(t))$ è una parametrizzazione della sfera che conserva gli angoli tra curve se e solo se $s'(t) = 1 s^2(t)$
- Imponendo che s(0) = 0 si provi che $s(t) = \frac{e^{2t}-1}{e^{2t}+1}$.
- Esprimere la coordinata t così determinata (di Mercatore) con la "latitudine" θ .

ESERCIZIO n. 16 (a) La funzione $f(x,y) = \binom{x-yx}{2xy}$ da \mathbb{R}^2 in se è iniettiva? È surgettiva? (b) Sia $f(x,y) = \binom{x^2+y^2}{2xy} = (u,v)$: si studi l'immagine di f, si studi al variare di (u,v) come sono fatte le fibre $f^{-1}\{(u,v)\}$.

ESERCIZIO n. 17 Si disegnino le curve $2y^2 - x(x-1)^2 = 0$, $(x^2 + y^2)^2 = 2(x^2 - y^2)$.

ESERCIZIO n. 18 a) Si calcoli la derivata $\frac{dy}{dx}$ nei seguenti casi: $x^3y-y^3x=a^2$, $\sin xy-e^{xy}-x^2y=0$, $x^y=y^x$.

b) Si calcolino le derivate specificate per le seguenti relazioni: $\frac{x^2}{a^2} + y^2b^2 + z^2c^2 = 1: \frac{\partial z}{\partial x}; \quad z^3 + 3xyz = a^3: \frac{\partial z}{\partial x}; \quad e^z - xy^2z = 0: \frac{\partial z}{\partial y}.$

ESERCIZIO n. 19 Sia $f(x,y) = \binom{x^2-y^2}{2xy} = (u,v)$: si studi l'immagine di f, si studi al variare di (u,v) come sono fatte le fibre $f^{-1}\{(u,v)\}$. Si determini le regioni ove il differenziale è invertibile e quindi le regioni ove la funzione è invertibile.

ESERCIZIO n. 20 a) Sia $f(x,y) = \binom{x^2}{y}$, $g(x,y) = \binom{x^3+xy}{y}$: se ne studino le immagini. Si studino le immagini delle regioni ove i differenziali non sono invertibili e come sono fatte le fibre $f^{-1}\{(u,v)\}, g^{-1}\{(u,v)\}$.

- fibre $f^{-1}\{(u,v)\}$, $g^{-1}\{(u,v)\}$. b) Sia $f(x,y) = \binom{e^{x+y}-e^{x-y}-k^2x}{x+y} = (u,v)$, $k \in \mathbf{R}$: si studi l'immagine di f e al variare di (u,v) come sono fatte le fibre $f^{-1}\{(u,v)\}$. Si determini un intorno di (x,y) = (0,0) in cui f é iniettiva, ed quindi si calcolino (relativamente a tale intorno) $\frac{\partial x}{\partial u}(0,0)$ e $\frac{\partial^2 y}{\partial u \partial v}(0,0)$.
- é iniettiva, ed quindi si calcolino (relativamente a tale intorno) $\frac{\partial x}{\partial u}(0,0)$ e $\frac{\partial^2 y}{\partial u \partial v}(0,0)$. c) Sia $f: \mathbf{R}^5 \to \mathbf{R}^2$ $f(x_1, x_2, y_1, y_2, y_3) = \binom{2e^{x_1} + x_2y_1 - 4y_2 + 3}{x_2 \cos x_1 - 6x_1 + 2y_1 - y_3}$: si verifichi che in un intorno di (0, 1, 3, 2, 7) la regione determinata dalle equazioni f = (0, 0) é un grafico rispetto alle variabili (y_1, y_2, y_3) e si calcoli $\frac{\partial x_1}{\partial y_2}(3, 2, 7)$. É possibile esplicitare (x_1, x_2) in funzione di (y_1, y_2, y_3) in ogni punto di $\{f = (0, 0)\}$?

ESERCIZIO n. 21 a) Sia $f(x,y) = {x^2-y^2 \choose xy} = (u,v)$: si trovi un intorno di $P_0 = (1,1)$ in cui f é iniettiva.

b) Si calcolino le derivate parziali seconde in $U_0 = (0, 1) = f(1, 1)$ dell'inversa della funzione f ristretta a tale intorno.

ESERCIZIO n. 22 Sia $T: \mathbf{R}^2 \mapsto \mathbf{R}^2$ una rotazione, cioè una applicazione lineare del tipo $x \mapsto Rx$, con $R = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ Detto $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$, dimostrare che: $\Delta(u \circ R) = (\Delta u) \circ R$ per ogni $u \in C^2$.

ESERCIZIO n.23 Si esprima $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ rispetto alle coordinate polari.

ESERCIZIO n. 24 Si identifichi lo spazio M delle matrici $n \times n$ con \mathbb{R}^{n^2} , ordinando in modo lessicografico gli elementi delle matrici.

- a) Sia $t \mapsto A(t)$ una funzione regolare da] -1; 1[in M tale che A(0) = A e A'(0) = I, ove I è la matrice dell'identità. Si trovi lo sviluppo di Taylor del primo ordine di A(t) in t = 0.
- b) Se $\Sigma=\{f(A)=1\}$ si provi che i vettori $X\in M$ tangenti ad $A\in\Sigma$ sono quelli per cui tr $A^{-1}X=0$.
- c) Si consideri la funzione $f: \mathbf{M} \to \mathbf{R}$ definita da $f(A) = \det A$. Si dimostri se $f(A) \neq 0$: $\nabla f(A) = \det A ({}^tA)^{-1} \quad ({}^tA \text{ indica la trasposta di } A)$.

NOTA: Ad una funzione $F: \mathbf{R}^2 \to \mathbf{R}^2$ del tipo F(x,y) = (f(x,y), g(x,y)) si associa la funzione \tilde{F} da \mathbf{C} in se: z = x + iy, $\tilde{F}(z) = f(x,y) + ig(x,y)$.

Tra le funzioni con derivate parziali vi sono quelle che ammettono derivata in senso complesso $\lim_{h\to 0,\ h\in \mathbf{C}} \frac{F(z+h)-F(z)}{h}$.

ESERCIZIO n. 25 - Si provi che le funzioni F differenziabili per cui \tilde{F} ha derivata in senso complesso sono tutte e sole quelle per cui $\frac{\partial f}{\partial x} = \frac{\partial g}{\partial y}$ e $\frac{\partial f}{\partial y} = -\frac{\partial g}{\partial x}$.

- Tra le funzioni da ${f R}^2$ in se che ammettono derivate parziali continue le uniche che conservano gli angoli tra due curve sono quelle derivabili in senso complesso.