Next: About this document ...
Corso di Matematica per Scienze geologiche - anno 2003-04
Secondo compitino - 17 dicembre 2003 - Tema n.1
Esercizio 1 Determinare il comportamento della serie
.
Esercizio 2 Per quali
la serie
è convergente?
Esercizio 3 Calcolare, se esiste,
.
Esercizio 4 Quante soluzioni reali ha l'equazione
?
Esercizio 5 Posto , verificare che è
bigettiva su , con inversa derivabile, e scrivere
.
Esercizio 6 Stabilire se la funzione
ha un asintoto obliquo
per , oppure no.
Esercizio 7 Determinare, se esistono, i massimi e i minimi
relativi della funzione
.
Esercizio 8 Determinare
in modo che la funzione
sia derivabile con derivata continua su .
Esercizio 9 In quali intervalli di la funzione
è crescente e convessa?
Esercizio 10 Calcolare l'integrale
.
Vincenzo Maria Tortorelli
2003-12-22