Matematica, Anno Accademico 2003-2004, Geo***

P. Acquistapace, V.M. Tortorelli

I foglio di esercizi: V.M. Tortorelli dal 2 ottobre 2003 al 9 ottobre 2003

Programma e materiale relativo al corso essere reperito in rete selezionando nella Pagina del Dipartimento la voce Materiale Didattico (http://WWW.dm.unipi.it/didactics/home.html) e quindi selezionando ALTRI CORSI DI LAUREA e Corso di laurea *****

ESERCIZIO n. 1 Si verifichino le seguenti identità:

$$(x+y)^2 = x^2 + y^2 + 2xy, \ x^2 - y^2 = (x-y)(x+y), x^3 - y^3 = (x-y)(x^2 + xy + y^2), \ x^3 + y^3 = (x+y)(x^2 - xy + y^2) \frac{x}{x-2} = 1 + \frac{2}{x-2}, \ \frac{x^3-8}{x^2-1} = x + \frac{x-8}{x^2-1}$$

DEFINIZIONE: dato $y \in \mathbf{R}$ si dice che $x \in \mathbf{R}$ è la sua radice quadrata se:

- 1) x > 0,
- 2) $x^2 = y$. Si scrive $x = \sqrt{y}$.

TEOREMA: Ogni numero reale non negativo ha un'unica radice quadrata.

ESERCIZIO n. 2 Si provi che:

- un numero reale negativo non ha radice quadrata;
- il numero $\sqrt{2}$ non è razionale (rapporto di numeri interi).

ESERCIZIO n. 3 - Dati a, b, c, con a > 0, si trovino in dipendenza i tre numeri dati altri tre numeri α , β , γ per cui:

$$ax^2 + bx + c = (\alpha x + \beta)^2 + \gamma$$

- Si tovi una formula risolutiva per le soluzioni reali dell'equazione $ax^2 + bx + x = 0$, e si dica quando ha senso.
- Si verifichi che se $x^2 + sx + p = 0$ allora s è 'meno la somma delle soluzioni' e p 'il prodotto delle soluzioni'.

ESERCIZIO n. 4 Si disegnino i sottoinsiemi di R dati da

$${x \in \mathbf{R} : x^2 + 3x - 10 > 0}, {x \in \mathbf{R} : \frac{x^3 + 27x}{x - 10} > 0}, {x \in \mathbf{R} : \sqrt{3x + 1} - \sqrt{2x + 3} > 0}$$

ESERCIZIO n. 5 Quali dei seguenti insiemi sono limitati?

ESERCIZIO n. 6 Trovare estremo superiore ed inferiore degli insiemi e dire se sono rispettivamente massiomo e minimo:

ESERCIZIO n. 7 - Dati $a_1 \neq a_2$ trovare il più grande y per cui $|x - a_1| + |x - a_2| \geq y$ per ogni $x \in \mathbf{R}$ (per ogni punto la somma delle distanze dai punti dati sia più grande di y).

*- Si generalizzi se sono dati n punti diversi $a_1, a_2, \ldots a_n$.

```
ESERCIZIO n. 8 - Si provi per induzione: 1+2+\ldots+n=\frac{n(n+1)}{2} - Si provi 1+x+\ldots x^{n-1}=\frac{1-x^n}{1-x}, e quindi generalizzando la prima parte dell' esercizio n. 1 si mostri che : x^n-y^n=(x-y)(x^{n-1}+x^{n-2}y+\ldots+x^{n-k-1}y^k+\ldots+y^{n-1}). ( Che dire su x^n+y^n?)
```

ESERCIZIO n. 9 - Si provi per induzione $(1+x)^n \ge 1 + nx$ se $x \ge 0$

- Si provi che vale anche se x > -1.

ESERCIZIO n. 10 Si provi per induzione:

$$1 + 2x + 3x^{2} + \dots nx^{n-1} = \frac{1 - (n+1)x^{n} + nx^{n+1}}{(1-x)^{2}}, (1+x)(1+x^{2}) \dots (1+x^{2^{n}}) = \frac{1 - x^{2^{n+1}}}{1-x}$$
$$n! \le n^{n} \le \frac{(2n)!}{n!}.$$

ESERCIZIO n. 11 Dato $x \in \mathbf{R}$ si definisce parte intera di x l'unico numero n intero $x-1 < n \le x$. Se $c_0 = [x], c_n = [10^n(x-c_0) - 10^{n-1}c_1... - 10c_{n-1}]$ allora $x = c_0, c_1c_2c_3...$

ESERCIZIO n. 12 - Si provi che $\sqrt{xy} \le \frac{x+y}{2}$, se $x, y \ge 0$ e se ne dia un'interpretazione geometrica.

- Si consideri la seguente proprietà D_n :
 comunque siano dati n numeri non negativi si ha $\sqrt[n]{x_1 \dots x_n} \leq \frac{x_1 + \dots x_n}{n}$.
- Si provi che se vale D_n vale D_{2n} .
- Si provi che se vale D_{n+1} vale D_n . Si deduca che per ogni n vale D_n .

ESERCIZIO n. 13 * - Si usi la proprietà provata nel precedente esercizio per mostrare che $\left(1+\frac{x}{n+1}\right)^{n+1} \geq \left(1+\frac{x}{n}\right)^n$ (se n>1-x), $\left(1+\frac{1}{n+1}\right)^n \geq \left(1+\frac{1}{n+2}\right)^{n+1}, \quad \sqrt[n]{n} \geq \frac{n+1}{n+1}$ (se $n\geq 4$).