MATEMATICA

Anno Accademico 2005-2006 Scienze Geologiche M.Novaga, V.M. Tortorelli

III prova finale, 12 giugno 2006

I PARTE: si dia la risposta alle seguenti domande senza giustificazione

1 - Si trovi la minima distanza dei punti dell'insieme piano definito da $x^2 + 2y^2 = 1$ dal punto (1,1).

R.:

2- Si trovi il coseno dell'angolo di incidenza tra l'insieme definito da $z^2=1+x^2-y^2$ e il piano definito da x+2y+3z=0 in (1,1,-1).

R.:

3- Si calcoli l'area della superficie nello spazio definita da $z=x^2-y^2$ e $x^2+y^2\leq 1.$

R.:

4- Si trovino tutte le soluzioni dell'equazione differenziale y''(t) - 2y'(t) + y(t) = 1

R.:

II PARTE: si risponda alla seguenti domande dando esaurienti giustificazioni

- a) Si consideri T la parametrizzazione in coordinate polari della sfera unitaria di centro l'origine. Sia M la matrice Jacobiana si esprima in termini delle coordinate (a, b), (α, β) il prodotto scalare tra i due vettori di \mathbf{R}^3 $M\binom{a}{b}$ e $M\binom{\alpha}{\beta}$.
- b) Si consideri N la matrice Jacobiana della composizione tra la parametrizzazione in coordinate polari e la proiezione stereografica dal "polo nord" sul piano tangente al "polo sud" per una sfera di centro l'origine e raggio unitario. Si esprima come sopra il prodotto scalare tra i due vettori di \mathbf{R}^2 $N\binom{a}{b}$ e $N\binom{\alpha}{\beta}$. Si deduca che la proiezione stereografica mantiene gli angoli tra le tangenti a curve incidenti.
- c) Si provi che la proiezione steregrafica conserva il rapporto tra area e perimetro al quadrato tra i triangoli del piano di proiezione e le rispettive preimmagini.