Elementi di topologia in \mathbb{R}^n

Il sottografico di una funzione continua è un aperto

Proposizione 1. Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione continua. Allora, il sottografico

$$\Omega := \left\{ (x, y) : y < f(x) \right\}$$

è un insieme aperto in \mathbb{R}^2 .

Dimostrazione 1. Sia $X_0 = (x_0, y_0)$ un punto di Ω . Si ha quindi che

$$f(x_0) - y_0 > 0.$$

Definiamo ora

$$\varepsilon := \frac{f(x_0) - y_0}{2},$$

che ovviamente possiamo scrivere anche come

$$f(x_0) = y_0 + 2\varepsilon.$$

Siccome f è continua esiste $\delta > 0$ tale che

$$|x - x_0| < \delta$$
 \Rightarrow $|f(x) - f(x_0)| < \varepsilon$.

Ma allora, per ogni (x, y) nel rettangolo

$$\mathcal{R} = (x_0 - \delta, x_0 + \delta) \times (y_0 - \varepsilon, y_0 + \varepsilon)$$

si ha

$$y < y_0 + \varepsilon = (f(x_0) - 2\varepsilon) + \varepsilon = f(x_0) - \varepsilon < f(x),$$

e quindi $\mathcal{R} \subset \Omega$. Infine, siccome il rettangolo \mathcal{R} contiene una palla di centro (x_0, y_0) e raggio $r = \min\{\varepsilon, \delta\}$, abbiamo che Ω è un aperto.

Dimostrazione 2. Dimostreremo che l'insieme

$$\mathbb{R}^2 \setminus \Omega := \Big\{ (x,y) \ : \ y \geq f(x) \Big\}$$

è un chiuso (per successioni). Sia

$$X_n = (x_n, y_n) \in \mathbb{R}^2 \setminus \Omega$$

una successione convergente ad un certo

$$X_{\infty} = (x_{\infty}, y_{\infty}) \in \mathbb{R}^2.$$

Per definizione, abbiamo che

$$f(x_n) \le y_n$$
 per ogni $n \in \mathbb{N}$.

Siccome f è continua, abbiamo che

$$f(x_{\infty}) = \lim_{n \to \infty} f(x_n) \le \lim_{n \to \infty} y_n = y_{\infty},$$

e quindi $X_{\infty} = (x_{\infty}, y_{\infty}) \in \mathbb{R}^2$.