Esercizi sulle forme esatte e le forme chiuse

Esempio 1. Sia $\Omega := \mathbb{R}^2 \setminus \{(0,0)\}$ e sia α la 1-forma (di classe C^{∞} su Ω)

$$\alpha = \frac{-y}{x^2 + y^2}dx + \frac{x}{x^2 + y^2}dy.$$

Dimostrare che la forma α è chiusa su Ω .

Esercizio 2. Sia $\Omega := \mathbb{R}^2 \setminus \{(0,0)\}$ e sia α la 1-forma (di classe C^{∞} su Ω)

$$\alpha = \frac{-y}{x^2 + 2y^2} dx + \frac{x}{x^2 + 2y^2} dy.$$

Dimostrare che α è chiusa ma non esatta su Ω .

Esercizio 3. Sia $\Omega := \mathbb{R}^2 \setminus \{(0,0)\}$ e sia α la 1-forma (di classe C^{∞} su Ω)

$$\alpha = \frac{-y}{(x^2 + y^2)^a} dx + \frac{x}{(x^2 + y^2)^a} dy.$$

- (1) Dimostrare che α non è esatta.
- (2) Per quali valori del parametro a > 0 la forma risulta chiusa?

Esercizio 4. Sia $\Omega := \mathbb{R}^2 \setminus \{(0,0)\}$ e sia α una 1-forma (di classe C^{∞} su Ω).

$$\alpha = \frac{-y^2x}{x^4 + y^4}dx + \frac{x^2y}{x^4 + y^4}dy.$$

Dire se α è :

- (a) chiusa e esatta (in Ω);
- (b) chiusa, ma non esatta (in Ω);
- (c) esatta, ma non chiusa (in Ω); È possibile che una forma sia esatta, ma non chiusa?
- (d) ne chiusa, ne esatta (in Ω).

Esercizio 5. Sia $\Omega := \mathbb{R}^2 \setminus \{(0,0)\}\ e$ sia α una 1-forma (di classe C^{∞} su Ω).

$$\alpha = \frac{-y^2}{x^2 + y^4} dx + \frac{xy}{x^2 + y^4} dy.$$

Dire se α è :

- (a) chiusa e esatta (in Ω);
- (b) chiusa, ma non esatta (in Ω);
- (c) esatta, ma non chiusa (in Ω);
- (d) ne chiusa, ne esatta (in Ω).

Esercizio 6. Sia $\Omega := \mathbb{R}^2 \setminus \{(0,0)\}$ e sia α una 1-forma (di classe C^{∞} su Ω).

$$\alpha = \frac{-y^2}{x^2 + y^4} dx + \frac{2xy}{x^2 + y^4} dy.$$

Dire se α è :

- (a) chiusa e esatta (in Ω);
- (b) chiusa, ma non esatta (in Ω);
- (c) esatta, ma non chiusa (in Ω);
- (d) ne chiusa, ne esatta (in Ω).

Esercizio 7. Sia $\Omega := \mathbb{R}^2 \setminus \{(0,0)\}$ e sia α una 1-forma (di classe C^{∞} su Ω).

$$\alpha = \frac{-\sin y}{x^2 + (\sin y)^2} dx + \frac{x \cos y}{x^2 + (\sin y)^2} dy.$$

Dire se $\alpha \ \dot{e}$:

- (a) chiusa e esatta (in Ω);
- (b) chiusa, ma non esatta (in Ω);
- (c) esatta, ma non chiusa (in Ω);
- (d) ne chiusa, ne esatta (in Ω).

Esercizio 8. Sia $\Omega := \mathbb{R}^2 \setminus \{(0,0)\}$ e sia α una 1-forma (di classe C^{∞} su Ω).

$$\alpha = \frac{-\sin(2y)}{x^2 + (\sin 2y)^2} dx + \frac{x\cos(2y)}{x^2 + (\sin 2y)^2} dy.$$

Dire se $\alpha \ \dot{e}$:

- (a) chiusa e esatta (in Ω);
- (b) chiusa, ma non esatta (in Ω);
- (c) esatta, ma non chiusa (in Ω);
- (d) ne chiusa, ne esatta (in Ω).

Esercizio 9. Supponiamo che la funzione $a : \mathbb{R} \to \mathbb{R}$ (di classe C^1) sia tale che la 1-forma $\alpha = x dx + a(x) dy$

è esatta. Dire se esistono una funzione a ed una funzione f tale che $df = \alpha$.

Esercizio 10. Sia $a : \mathbb{R} \to \mathbb{R}$ una funzione di classe C^1 . Dire se la forma $u \, dx + x^2 a(u) \, du$

 \grave{e} esatta su \mathbb{R}^2 .

Esercizio 11. Sia $a : \mathbb{R} \to \mathbb{R}$ una funzione di classe C^1 . Dire se la forma y dx + xa(y) dy

 \grave{e} esatta su \mathbb{R}^2 .

Esercizio 12. Sia $a : \mathbb{R} \to \mathbb{R}$ una funzione di classe C^1 . Dire se la forma $xy \, dx + a(y) \, dy$

è esatta su \mathbb{R}^2 .

Esercizio 13. Sia $a : \mathbb{R} \to \mathbb{R}$ una funzione di classe C^1 . Dire se è possibile che la forma xy dx + a(x) dy

sia esatta su \mathbb{R}^2 .

Esercizio 14. Sia $a : \mathbb{R} \to \mathbb{R}$ una funzione di classe C^1 . Dire se è possibile che la forma a(x) dx + a(y) dy

sia esatta su \mathbb{R}^2 .

Esercizio 15. Sia $a : \mathbb{R} \to \mathbb{R}$ una funzione di classe C^1 . Dire se è possibile che la forma a(y) dx + a(x) dy

sia esatta su \mathbb{R}^2 .

Esercizio 16. Sia $a : \mathbb{R} \to \mathbb{R}$ una funzione di classe C^1 . Dire se è possibile che la forma a(y) dx + a(xy) dy

sia esatta su \mathbb{R}^2 .

Esercizio 17. Sia $a : \mathbb{R} \to \mathbb{R}$ una funzione di classe C^1 . Dire se è possibile che la forma a(x) dx + a(xy) dy

sia esatta su \mathbb{R}^2 .

Dagli appelli precedenti

Esercizio 18 (Giugno 2020). Calcolare $d(x^2) \wedge d(xy)$.

Esercizio 19 (Giugno 2020). Sia Ω un aperto di \mathbb{R}^2 . Quali delle seguenti affermazioni sono vere ?

(a) Per ogni coppia di funzioni $f: \Omega \to \mathbb{R}$ e $g: \Omega \to \mathbb{R}$ si ha

$$df \wedge dg = d(fg)$$

(b) Per ogni coppia di funzioni $f: \Omega \to \mathbb{R}$ e $g: \Omega \to \mathbb{R}$ si ha

$$df \wedge dg = \det \left(\begin{array}{cc} \partial_x f & \partial_y f \\ \partial_x g & \partial_y g \end{array} \right) dx \wedge dy$$

(c) Per ogni coppia di funzioni $f: \Omega \to \mathbb{R}$ e $g: \Omega \to \mathbb{R}$ si ha

$$d(fg) = \det \left(\begin{array}{cc} \partial_x f & \partial_y f \\ \partial_x g & \partial_y g \end{array} \right) dx \wedge dy$$

(d) Per ogni coppia di funzioni $f: \Omega \to \mathbb{R}$ e $g: \Omega \to \mathbb{R}$ si ha

$$d\!f\wedge dg=f\,dg+g\,d\!f$$

(e) Per ogni coppia di funzioni $f:\Omega\to\mathbb{R}$ e $g:\Omega\to\mathbb{R}$ si ha

$$d(fg) = f \, dg + g \, df$$

(f) Per ogni coppia di funzioni $f: \Omega \to \mathbb{R}$ e $g: \Omega \to \mathbb{R}$ si ha

$$d(fdg)=df\wedge dg$$

(g) Per ogni coppia di funzioni $f: \Omega \to \mathbb{R}$ e $g: \Omega \to \mathbb{R}$ si ha

$$d(gdf) = df \wedge dg$$

Esercizio 20 (Giugno 2020). Quali delle seguenti forme differenziali sono chiuse?

(a)
$$e^x dx + e^y dy$$

(b)
$$e^{xy} dx + e^{xy} dy$$

(c)
$$ye^x dx + xe^y dy$$

(d)
$$ye^{xy} dx + xe^{xy} dy$$

(e)
$$xe^x dx + ye^y dy$$

Esercizio 21 (Luglio 2020). Quali delle seguenti forme differenziali sono chiuse?

(a)
$$\frac{y}{\sqrt{x^2 + y^2}} dx + \frac{x}{\sqrt{x^2 + y^2}} dy$$

(b)
$$\frac{-y}{\sqrt{x^2+y^2}} dx + \frac{x}{\sqrt{x^2+y^2}} dy$$

(c)
$$\frac{x}{\sqrt{x^2 + y^2}} dx + \frac{y}{\sqrt{x^2 + y^2}} dy$$

(d)
$$\frac{-x}{\sqrt{x^2+y^2}} dx + \frac{y}{\sqrt{x^2+y^2}} dy$$

Esercizio 22 (Luglio 2020). Quali delle seguenti forme differenziali sono chiuse?

(a)
$$\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$

(b)
$$\frac{-y}{x^2+y^2} dx + \frac{x}{x^2+y^2} dy$$

(c)
$$\frac{x}{x^2 + y^2} dx + \frac{y}{x^2 + y^2} dy$$

(d)
$$\frac{-x}{x^2+y^2} dx + \frac{y}{x^2+y^2} dy$$

Esercizio 23 (Luglio 2020). Quali delle sequenti forme differenziali sono chiuse?

(a)
$$\frac{y}{3x^2 + y^2} dx + \frac{x}{3x^2 + y^2} dy$$

(b)
$$\frac{-y}{3x^2+y^2}dx + \frac{x}{3x^2+y^2}dy$$

(c)
$$\frac{x}{3x^2 + y^2} dx + \frac{y}{3x^2 + y^2} dy$$

(d)
$$\frac{-x}{3x^2+y^2}dx + \frac{y}{3x^2+y^2}dy$$

Esercizio 24 (Luglio 2020). Quali delle affermazioni sequenti sono vere ?

(a) Le 1-forme differenziali α che si possono scrivere come

$$\alpha = f(x) dx + f(y) dy$$
 (dove $f : \mathbb{R} \to \mathbb{R}$ è una qualsiasi funzione di classe C^1)

sono chiuse, ma non sono esatte.

(b) Le 1-forme differenziali α che si possono scrivere come

$$\alpha = f(x) dx + f(y) dy$$
 (dove $f: \mathbb{R} \to \mathbb{R}$ è una qualsiasi funzione di classe C^1)

sono esatte, ma non sono chiuse.

(c) Le 1-forme differenziali α che si possono scrivere come

$$\alpha = f(x) dx + f(y) dy$$
 (dove $f: \mathbb{R} \to \mathbb{R}$ è una qualsiasi funzione di classe C^1)

sono sia chiuse che esatte.

(d) Le 1-forme differenziali α che si possono scrivere come

$$\alpha = f(x) dx + f(y) dy$$
 (dove $f: \mathbb{R} \to \mathbb{R}$ è una qualsiasi funzione di classe C^1)

sono esatte, ma solo se definite su un dominio semplicemente connesso.

(e) La 1-forma

$$xy\,dx + (x^2 + y^2)\,dy$$

è chiusa.

(f) La 1-forma

$$2xy\,dx + (x^2 + y^2)\,dy$$

è chiusa.

(g) La 1-forma

$$3xy\,dx + (x^2 + y^2)\,dy$$

è chiusa.

Esercizio 25 (Luglio 2020). Sia $\Omega = \mathbb{R}^2 \setminus K$, dove $K \in l$ 'insieme

$$K = \{(x,1) : x \ge 1\} \cup \{(x,-1) : x \le -1\}.$$

Sia α la 1-forma (di classe C^1 su Ω)

$$\alpha = a(x, y) dx + b(x, y) dy.$$

Quali delle affermazioni seguenti sono vere ?

(a) Per qualsiasi scelta delle funzioni a e b, la funzione

$$F: \Omega \to \mathbb{R}, \qquad F(x,y) = \int_0^y b(0,t) dt + \int_0^x a(s,y) ds$$

è tale che $dF = \alpha$.

(b) Per qualsiasi scelta delle funzioni a e b, la funzione

$$F: \Omega \to \mathbb{R}, \qquad F(x,y) = \int_0^y a(0,t) dt + \int_0^x b(s,y) ds$$

è tale che $dF = \alpha$.

(c) Se le funzioni a e b sono tali che

$$\partial_y a(x,y) = \partial_x b(x,y) \quad per \ ogni \quad (x,y) \in \Omega,$$

allora la funzione

$$F: \Omega \to \mathbb{R}, \qquad F(x,y) = \int_0^y b(0,t) dt + \int_0^x a(s,y) ds$$

è tale che $dF = \alpha$.

(d) Se le funzioni a e b sono tali che

$$\partial_y a(x,y) = \partial_x b(x,y) \quad per \ ogni \quad (x,y) \in \Omega,$$

allora la funzione

$$F: \Omega \to \mathbb{R}, \qquad F(x,y) = \int_0^y a(0,t) dt + \int_0^x b(s,y) ds$$

 \grave{e} tale che $dF = \alpha$.

- (e) In Ω ogni 1-forma è esatta
- (f) In Ω ogni 1-forma chiusa è esatta
- (g) In Ω ogni 1-forma esatta è chiusa
- (h) L'insieme Ω non è stellato. Di conseguenza, in Ω ci sono forme esatte che non sono chiuse.
- (i) L'insieme Ω non è stellato. Di conseguenza, in Ω ci sono forme chiuse che non sono esatte.

Esercizio 26 (Luglio 2020). Sia α la 1-forma

$$\alpha = x d(xy) + x^2 d(y^2).$$

Calcolare $d\alpha$.

Esercizio 27 (Maggio 2020 - simulazione prova scritta). Sia Ω un aperto di \mathbb{R}^2 e siano $a:\Omega\to\mathbb{R}$ e $b:\Omega\to\mathbb{R}$ due funzioni di classe C^1 . Consideriamo la 1-forma differenziale

$$\alpha = a(x, y) dx + b(x, y) dy$$

Quali delle affermazioni seguenti sono vere ?

- (a) Se α è esatta, allora α è chiusa.
- (b) Se α è chiusa, allora α è esatta.
- (c) α è chiusa, se e solo se è esatta.
- (d) Se $d\alpha = 0$, allora α è esatta
- (e) Se $d\alpha = 0$, allora α è chiusa
- (f) Se α è esatta, allora $d\alpha = 0$
- (g) Se $d\alpha = 0$, allora le funzioni a e b sono costanti
- (h) La forma $d\alpha$ è esatta
- (i) La forma $d\alpha$ è chiusa

Esercizio 28 (Maggio 2020 - simulazione prova scritta). Siano $a : \mathbb{R} \to \mathbb{R}$ e $b : \mathbb{R} \to \mathbb{R}$ due funzioni di classe C^1 e siano α e β le 1-forme

$$\alpha = a(x) dx + b(y) dy$$

$$\beta = a(y) dx + b(x) dy$$

 $Quali\ delle\ affermazioni\ seguenti\ sono\ vere\ ?$

- (a) α è chiusa (per qualsiasi scelta delle funzioni a e b)
- (b) β è chiusa (per qualsiasi scelta delle funzioni a e b)
- (c) α è esatta (per qualsiasi scelta delle funzioni a e b)
- (d) β è esatta (per qualsiasi scelta delle funzioni a e b)
- (e) Se α e β sono esatte, allora le funzioni a e b sono costanti.

(f) Se α e β sono esatte, allora le funzioni a e b sono uguali a zero.

Esercizio 29 (Maggio 2020 - simulazione prova scritta). Quali delle seguenti forme differenziali sono chiuse?

- (a) $xy^2 dx + yx^2 dy$
- (b) xy dx + xy dy
- (c) x dx + y dy
- (d) y dx + x dy
- (e) (x+y) dx + x dy

Esercizio 30 (Maggio 2020 - simulazione prova scritta). Siano $a : \mathbb{R}^2 \to \mathbb{R}$ $e \ b : \mathbb{R}^2 \to \mathbb{R}$ due funzioni di classe C^1 e siano α e β le 1-forme

$$\alpha = a(x, y) dx + b(x, y) dy$$
$$\beta = x a(x, y) dx + y b(x, y) dy$$

Quali delle affermazioni seguenti sono vere ?

- (a) Se α è chiusa, allora β è chiusa
- (b) Se α è esatta, allora β è esatta
- (c) Se α e β sono chiuse, allora α è esatta.
- (d) Se α e β sono chiuse, allora α e β sono entrambe esatte.

Esercizio 31 (Appello 3, Giugno-Luglio 2021). Dati tre numeri interi positivi $m, n, k \in \mathbb{N}$, consideriamo la 1-forma

$$\alpha = e^{nx}(y^4 - mx + 1) dx + e^{mx}y^k dy.$$

Per quali valori dei parametri m, n e k la forma α è chiusa?

Esercizio 32. Siano

$$a: \mathbb{R}^2 \to \mathbb{R}$$
 $e \quad b: \mathbb{R}^2 \to \mathbb{R}$

due funzioni C^{∞} . Consideriamo la 1-forma.

$$\alpha = a(x, y) dx + b(x, y) dy.$$

- (1) Calcolare $d\alpha$ in funzione di a e b.
- (2) Diciamo che la forma α è chiusa, se:
- (3) Diciamo, invece, che la 1-forma α è esatta, se esiste una funzione $F: \mathbb{R}^2 \to \mathbb{R}$ tale che:
- (4) Scrivere le definizioni di forma chiusa e forma esatta in termini dei coefficienti a e b.

Esercizio 33 (Appello 3, Giugno-Luglio 2021). Per quali valori del parametro $a \in \mathbb{R}$ la forma differenziale

$$\alpha = \frac{2x - ay}{x^2 + y^2} \, dx + \frac{x + 2y}{x^2 + y^2} \, dy$$

è chiusa? Per i valori trovati calcolare $\int_{\Sigma} \alpha$, dove γ è la curva

$$\gamma: [-1,1] \to \mathbb{R}^2$$
, $\gamma(t) = (t, 1 - t^2)$.

Esercizio 34 (Appello 2, Giugno-Luglio 2021). Consideriamo la forma differenziale

$$\alpha = (y + xy^2) dx + (x - x^2y) dy.$$

Calcolare $d\alpha$.

Esercizio 35 (Appello 2, Giugno-Luglio 2021). Per quali valori del parametro $a \in \mathbb{R}$ la forma differenziale

$$\alpha = \frac{ay + x}{x^2 + y^2} \, dx + \frac{x + y}{x^2 + y^2} \, dy$$

è chiusa? Per i valori trovati calcolare $\int_{\gamma} \alpha$, dove γ è la curva

$$\gamma: [0, 2\pi] \to \mathbb{R}^2$$
, $\gamma(t) = (\cos(2t), \sin(2t))$.

Esercizio 36 (Appello 1, Giugno-Luglio 2021). Siano

$$a: \mathbb{R}^3 \to \mathbb{R}$$
, $b: \mathbb{R}^3 \to \mathbb{R}$ e $b: \mathbb{R}^3 \to \mathbb{R}$

tre funzioni C^{∞} . Consideriamo la 1-forma.

$$\alpha = a(x, y, z) dx + b(x, y, z) dy + c(x, y, z) dz.$$

- (1) Diciamo che la forma α è chiusa, se:
- (2) In termini delle funzioni a, b e c, questo si traduce nel seguente sistema:
- (3) Diciamo, invece, che la 1-forma è esatta, se esiste una funzione $F: \mathbb{R}^3 \to \mathbb{R}$ tale che:

Esercizio 37 (Appello 1, Giugno-Luglio 2021). Consideriamo la forma differenziale

$$\alpha = (xy + 3x - y^2) dx + (x + x^2 + y^3) dy.$$

Calcolare $d\alpha$.

Esercizio 38 (Gennaio 2021). Quali delle seguenti forme differenziali sono chiuse?

- (a) $e^x dx + \sin(y) dy$
- (b) $e^x dx + e^{xy} dy$
- (c) $e^x dx + e^{2y} dy$
- (d) $e^y dx + xe^y dy$
- (e) $xe^y dx + ye^x dy$

Esercizio 39 (Gennaio 2021). Quali delle seguenti forme differenziali sono chiuse?

- (a) $e^x dx + \sin(x) dy$
- (b) $e^y dx + e^x dy$
- (c) $e^x dx + e^{2y} dy$
- (d) $xe^y dx + e^y dy$
- (e) $cos(y) dx + e^x dy$

Esercizi dai quiz 2021

Esercizio 40. La forma differenziale

$$\frac{-e^y}{x^2 + e^{2y}} \, dx + \frac{xe^y}{x^2 + e^{2y}} \, dy$$

è chiusa.

- (a) * *VERO*
- (b) FALSO

Esercizio 41. La forma differenziale

$$\frac{-e^{-y}}{x^2 + e^{-2y}} \, dx + \frac{xe^{-y}}{x^2 + e^{-2y}} \, dy$$

è chiusa.

- (a) VERO
- (b) * FALSO

Esercizio 42. La forma differenziale

$$\frac{e^{-y}}{x^2 + e^{-2y}} dx + \frac{xe^{-y}}{x^2 + e^{-2y}} dy$$

è chiusa.

- (a) * VERO
- (b) FALSO

Esercizio 43. La forma differenziale

$$(2x + x^2 + 2y)e^{x+2y} dx + (2 + 2x^2 + 4y)e^{x+2y} dy$$

è chiusa.

- (a) * *VERO*
- (b) FALSO

Esercizio 44. La forma differenziale

$$(2x + x^2 + 2y)e^{x+2y} dx + (1 + x^2 + 2y)e^{x+2y} dy$$

è chiusa.

- (a) VERO
- (b) * FALSO

Esercizio 45. La forma differenziale

$$\frac{-y}{x^2 + y^2} \, dx + \frac{x}{x^2 + y^2} \, dy$$

è chiusa.

- (a) * VERO
- (b) FALSO

Esercizio 46. La forma differenziale

$$\frac{-x}{x^2 + y^2} \, dx + \frac{y}{x^2 + y^2} \, dy$$

è chiusa.

- (a) VERO
- (b) * FALSO

Esercizio 47. La forma differenziale

$$\frac{x}{x^2 + y^2} \, dx + \frac{y}{x^2 + y^2} \, dy$$

è chiusa.

- (a) * *VERO*
- (b) FALSO

Esercizio 48. La forma differenziale

$$\frac{y}{x^2 + y^2} \, dx + \frac{x}{x^2 + y^2} \, dy$$

è chiusa.

- (a) VERO
- (b) * FALSO

Esercizio 49. La forma differenziale

$$y(1+x)e^{x-y} dx + x(1-y)e^{x-y} dy$$

è chiusa.

- (a) * *VERO*
- (b) FALSO

Esercizio 50. La forma differenziale

$$y(1+x)e^{x-y} dx - x(1+y)e^{x-y} dy$$

è chiusa.

- (a) VERO
- (b) * FALSO

Esercizio 51. La forma differenziale

$$y(2x+1)e^{2x-y} dx - x(y-1)e^{2x-y} dy$$

è chiusa.

- (a) * *VERO*
- (b) FALSO

Esercizio 52. La forma differenziale

$$2y(x+1)e^{2x-y} dx - x(y-1)e^{2x-y} dy$$

è chiusa.

- (a) VERO
- (b) * FALSO

Esercizio 53. La forma differenziale

$$\frac{2\sqrt{y}}{x^2}\,dx + \frac{1}{x\sqrt{y}}\,dy$$

è chiusa.

- (a) VERO
- (b) * FALSO

Esercizio 54. La forma differenziale

$$xy\,dx + (x^2 + y^2)\,dy$$

 \grave{e} chiusa.

- (a) VERO
- (b) * FALSO

Esercizio 55. La forma differenziale

$$2xy\,dx + (x^2 + y^2)\,dy$$

è chiusa.

- (a) * *VERO*
- (b) FALSO

Esercizio 56. La forma differenziale

$$3xy\,dx + (x^2 + y^2)\,dy$$

è chiusa.

- (a) VERO
- (b) * FALSO

Esercizio 57. La forma differenziale

$$\frac{y}{3x^2 + y^2} \, dx + \frac{x}{3x^2 + y^2} \, dy$$

è chiusa.

- (a) VERO
- (b) * FALSO

Esercizio 58. La forma differenziale

$$\frac{-y}{3x^2 + y^2} \, dx + \frac{x}{3x^2 + y^2} \, dy$$

è chiusa.

- (a) * *VERO*
- (b) FALSO

Esercizio 59. La forma differenziale

$$\frac{-3y}{3x^2 + y^2} \, dx + \frac{x}{3x^2 + y^2} \, dy$$

è chiusa.

- (a) VERO
- (b) * FALSO

Esercizio 60. La forma differenziale

$$\frac{x}{3x^2 + y^2} \, dx + \frac{y}{3x^2 + y^2} \, dy$$

è chiusa.

(a) VERO

(b) * FALSO

Esercizio 61. La forma differenziale

$$\frac{3x}{3x^2 + y^2} \, dx + \frac{y}{3x^2 + y^2} \, dy$$

è chiusa.

- (a) * VERO
- (b) FALSO

Esercizio 62. La forma differenziale

$$\frac{-x}{3x^2 + y^2} \, dx + \frac{y}{3x^2 + y^2} \, dy$$

è chiusa.

- (a) VERO
- (b) * FALSO

Esercizio 63. La forma differenziale

$$x d(xy) + x^2 d(y^2)$$

 \grave{e} chiusa.

- (a) VERO
- (b) * FALSO

Esercizio 64. La forma differenziale

$$e^{ay} dx + xe^{ay} dy$$

è chiusa se e solo se a = 2.

- (a) VERO
- (b) * FALSO

Esercizio 65. La forma differenziale

$$e^{ay} dx + xe^{ay} dy$$

è chiusa se e solo se a = 0.

- (a) VERO
- (b) * FALSO

Esercizio 66. La forma differenziale

$$e^{ay} dx + xe^{ay} dy$$

è chiusa se e solo se a = 1.

- (a) VERO
- (b) * FALSO

Esercizio 67. La forma differenziale

$$e^{ax}\cos(by)\,dx + e^{ax}\sin(by)\,dy$$

è chiusa se e solo se a + b = 0.

- (a) * *VERO*
- (b) FALSO

Esercizio 68. La forma differenziale

$$-e^{ax}\cos(by)\,dx + e^{ax}\sin(by)\,dy$$

è chiusa se e solo se a + b = 0.

- (a) VERO
- (b) * FALSO

Esercizio 69. La forma differenziale

$$(2x + x^2)e^y dx + (x + xy + x^2)e^y dy$$

 \grave{e} chiusa.

(a) * *VERO*

(b) FALSO

Esercizio 70. La forma differenziale

$$(2x-y)e^y dx + (x-xy+x^2)e^y dy$$

è chiusa.

- (a) VERO
- (b) *FALSO

Esercizio 71. La forma differenziale

$$(-3y^2 + xy + 1)e^{xy} dx + (x^2 - 3xy - 3)e^{xy} dy$$

è chiusa.

- (a) * *VERO*
- (b) FALSO

Esercizio 72. La forma differenziale

$$(-3y^2 + xy + 1)e^{xy} dx + (x^2 - 3xy - 1)e^{xy} dy$$

è chiusa.

- (a) VERO
- (b) * FALSO

Esercizio 73. La forma differenziale

$$\alpha = \frac{-y^2x}{x^4 + y^4}dx + \frac{x^2y}{x^4 + y^4}dy.$$

 \grave{e} chiusa.

- (a) * *VERO*
- (b) FALSO

Esercizio 74. La forma differenziale

$$\alpha = \frac{-y^2}{x^4 + y^4} dx + \frac{x^2}{x^4 + y^4} dy.$$

è chiusa.

- (a) VERO
- (b) * FALSO

Esercizio 75. La forma differenziale

$$\frac{-y}{x+y}dx + \frac{x}{x+y}dy$$

è chiusa.

- (a) VERO
- (b) * FALSO

Esercizio 76. La forma differenziale

$$\frac{-y^2}{x^2 + y^4} dx + \frac{xy}{x^2 + y^4} dy.$$

è chiusa.

- (a) VERO
- (b) * FALSO

Esercizio 77. La forma differenziale

$$\frac{-y^2}{x^2 + y^4} dx + \frac{2xy}{x^2 + y^4} dy.$$

è chiusa.

- (a) * *VERO*
- (b) FALSO

Esercizio 78. La forma differenziale

$$\frac{-\sin y}{x^2 + (\sin y)^2} dx + \frac{x \cos y}{x^2 + (\sin y)^2} dy.$$

è chiusa.

- (a) * VERO
- (b) FALSO

Esercizio 79. La forma differenziale

$$\frac{-\cos y}{x^2 + (\sin y)^2} dx + \frac{x \sin y}{x^2 + (\sin y)^2} dy.$$

 \grave{e} chiusa.

- (a) VERO
- (b) * FALSO

Esercizio 80. La forma differenziale

$$\frac{-\cos y}{x^2 + (\cos y)^2} dx + \frac{x \sin y}{x^2 + (\cos y)^2} dy.$$

 \grave{e} chiusa.

- (a) VERO
- (b) * FALSO

Esercizio 81. La forma differenziale

$$\frac{\cos y}{x^2 + (\cos y)^2} dx + \frac{x \sin y}{x^2 + (\cos y)^2} dy.$$

 \grave{e} chiusa.

- (a) * VERO
- (b) FALSO