Lo spazio $W^{1,p}(I)$

$W^{1,p}(I)$ È UNO SPAZIO VETTORIALE

Date due funzioni $u, v \in W^{1,p}(I)$, e due numeri reali $\alpha, \beta \in \mathbb{R}$, abbiamo che

$$\alpha u + \beta v \in W^{1,p}(I)$$
 e $\alpha u' + \beta v' = (\alpha u + \beta v)'.$

Infatti, siccome $\alpha u' + \beta v' \in L^p(I)$ e $\alpha u + \beta v \in L^p(I)$, basta verificare che per ogni $\phi \in C_c^1(I)$ si ha:

$$\begin{split} \int_{I} \Big(\alpha u + \beta v\Big) \phi' \, dx &= \alpha \int_{I} u \phi' \, dx + \beta \int_{I} v \phi' \, dx \\ &= -\alpha \int_{I} u' \phi \, dx - \beta \int_{I} v' \phi \, dx \\ &= -\int_{I} (\alpha u' + \beta v') \phi \, dx. \end{split}$$

La norma su $W^{1,p}(I)$

Per ogni $u \in W^{1,p}(I)$ definiamo

$$||u||_{W^{1,p}(I)} := ||u||_{L^p(I)} + ||u'||_{L^p(I)}.$$

È immediato verificare che se $||u||_{W^{1,p}(I)}$, allora u=0 e che

$$\|\alpha u\|_{W^{1,p}(I)} = |\alpha| \|u\|_{W^{1,p}(I)}$$
 per ogni $\alpha \in \mathbb{R}$.

Inoltre, $\|\cdot\|_{W^{1,p}(I)}$ soddisfa la disuguaglianza triangolare

$$||u+v||_{W^{1,p}(I)} = ||u+v||_{L^p(I)} + ||u'+v'||_{L^p(I)}$$

$$\leq ||u||_{L^p(I)} + ||u'||_{L^p(I)} + ||v||_{L^p(I)} + ||v'||_{L^p(I)}$$

$$= ||u||_{W^{1,p}(I)} + ||v||_{W^{1,p}(I)}.$$

Quindi, $\|\cdot\|_{W^{1,p}(I)}$ è una norma su $W^{1,p}(I)$ per ogni $p\in [1,+\infty]$.

$W^{1,p}(I)$ è uno spazio di Banach

Dimostriamo che lo spazio normato $\left(W^{1,p}(I), \|\cdot\|_{W^{1,p}(I)}\right)$ è uno spazio di Banach. Sia $u_n \in W^{1,p}(I)$ una successione di Cauchy. Siccome

$$||u_n - u_m||_{W^{1,p}(I)} = ||u_n - u_m||_{L^p(I)} + ||u'_n - u'_m||_{L^p(I)},$$

abbiamo che le successioni

$$u_n \in L^p(I)$$
 e $u'_n \in L^p(I)$

sono di Cauchy in $L^p(I)$. Esistono quindi i limiti forti in $L^p(I)$:

$$u := \lim_{n \to +\infty} u_n$$
 e $v := \lim_{n \to +\infty} u'_n$.

Rimane da dimostrare che v è la derivata debole di u. Data una funzione test $\phi \in C^1_c(I)$, abbiamo:

$$\int_{I} u(x)\phi'(x) dx = \lim_{n \to +\infty} \int_{I} u_n(x)\phi'(x) dx$$
$$= -\lim_{n \to +\infty} \int_{I} u'_n(x)\phi(x) dx = -\int_{I} v(x)\phi(x) dx. \qquad \Box$$

$W^{1,2}(I)$ è uno spazio di Hilbert

Per ogni $u, v \in W^{1,2}(I)$ definiamo:

$$< u, v > := \int_{I} u(x)v(x) dx + \int_{I} u'(x)v'(x) dx.$$

Allora,

$$<\cdot,\cdot>:W^{1,2}(I)\times W^{1,2}(I)\to\mathbb{R}$$

è una forma bilineare simmetrica e definita positiva su $W^{1,2}(I)$. La norma associata è:

$$< u, u > 1/2 = \left(\int_I u^2(x) dx + \int_I (u'(x))^2 dx \right)^{1/2},$$

ed è equivalente alla norma

$$||u||_{W^{1,2}(I)} = ||u||_{L^2(I)} + ||u'||_{L^2(I)}.$$

Di conseguenza, il prodotto scalare $<\cdot,\cdot>$ rende lo spazio $W^{1,2}(I)$ uno spazio di Hilbert.

$$W^{1,p}(I)$$
 come sottospazio di $L^p(I) \times L^p(I)$.

Dato $p \in [1, +\infty]$, possiamo identificare lo spazio $W^{1,p}(I)$ con lo spazio delle coppie

$$(u,v) \in L^p(I) \times L^p(I)$$

tali per cui v è esattamente la derivata debole u', ovvero:

$$\int_{I} u(x)\phi'(x) dx = -\int_{I} v(x)\phi(x) dx \quad \text{per ogni} \quad \phi \in C_{c}^{1}(I).$$

Allora, $W^{1,p}(I)$ è un sottospazio chiuso dello spazio di Banach

$$L^p(I) \times L^p(I)$$

munito della norma

$$||(f,g)||_{L^p(I)\times L^p(I)} := ||f||_{L^p(I)} + ||g||_{L^p(I)}.$$

Di conseguenza, abbiamo:

Proposizione 1. Per ogni $p \in [1, +\infty)$ lo spazio $W^{1,p}(I)$ è separabile.